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Abstract
This paper mainly presents our developed approach for the CN-
SRC2022 competition, specifically the open and fixed tracks
in speaker verification task. In the context of speaker verifica-
tion, a standard protocol is to extract the discriminative feature
embeddings to determine the speaker identity via the similarity
calculation. Compared to the Voxceleb datasets, the Cnceleb
datasets involve more complex conditions as well as more chal-
lenging scenarios, which increases multi-genre and cross-genre
complexity greatly. For fixed track, we have proposed two main
improvement options. In terms of the model architecture, adap-
tive convolution extracts more robust representations, while dy-
namic convolution improves the representation capacity of the
model. In terms of the task, we find that the noisy scene in-
formation could bring the negative effect. To handle this prob-
lem, we adopt a gradient reversal layer to decouple the harm-
ful scene features. For open track, we use a pre-trained model
trained on the Voxceleb datasets, and then fine-tune it on the
Cnceleb datasets. Finally, by fusing the scores of each sys-
tem, our method achieves 0.4195 minDCF in the fixed track
and 0.3707 minDCF in the open track.

1. Introduction
Speaker verification systems are becoming more and more pop-
ular in real-life applications, but they also face a variety of chal-
lenges. For example, noise interference, far-field speaker veri-
fication and disruption from scene information. As the research
goes deeper [1, 2, 3], the framework of speaker verification sys-
tems is becoming clear. The main approach is to extract the
feature embeddings of enrolling audio and the test audio by the
trained model, then compare the similarity between them. Com-
mon input features are Mel Frequency Cepstrum Coefficient
(MFCC), Filter bank (FBank), and even raw audio. Similar-
ity calculation methods commonly used are Probabilistic Linear
Discriminant Analysis (PLDA) as well as cosine similarity.

In the beginning, speaker verification has gone through
traditional statistical methods such as Hidden Markov Model
(HMM), Gaussian Mixture Model (GMM), Gaussian Mixture
model-Universal background model (GMM-UBM), Joint Fac-
tor Analysis (JFA), and i-vector. In recent years, speaker verifi-
cation has been changing in terms of models as deep networks
continue to develop. David Snyder et al. [4] has proposed x-
vector model to extract speaker embeddings which gets perfect
effect in 2017. Then in 2018, they complemented the experi-
ment for exploring the effect of data augmentation on the results
[5]. Since then, speaker verification methods using deep learn-
ing have become popular. Meanwhile, many variants of Time
Delay Neural Network (TDNN) [6] have gradually emerged, in-
cluding extended TDNN (E-TDNN) [7] and factorized TDNN

(F-TDNN) [8]. Yaqi Yu et al. [9] proposed densely connected
TDNN (D-TDNN) with bottleneck layers and dense connec-
tivity. In 2020, Brecht Desplanques et al. proposed ECAPA-
TDNN [10] using a variety of techniques in the field of vision,
such as Squeeze-and-Excitation blocks. These complementary
messages were also considered, aggregating and spreading the
information of the different layers. In recent years, a number of
new ideas and approaches have emerged in the field of speaker
verification. A novel bidirectional multiscale feature aggrega-
tion (BMFA) [11] network is proposed to enable the repeated
integration of features at different stages. A novel multi-scale
waveform encoder [12] that tries to extract speaker embedding
directly from the original waveform shows positive and com-
petitive results. As in the case of text-independent speaker ver-
ification, text-dependent speaker verification has also been de-
veloped. Yan Liu et al. [13] improved text-dependent speaker
verification using a multi-task learning network.

The Cnceleb1 [14] datasets and the Cnceleb2 [15] datasets
used in this competition are collected in unconstrained condi-
tions. Comparing to Voxceleb [16] datasets, Cnceleb datasets
pay more attention to Chinese celebrities and scene genres of
speech. This also leads to a more challenging problem. When
a speaker’s genre of enroll speech is different from the test
speech, it can significantly reduce the accuracy of speaker veri-
fication.

All of our experiments were conducted based on the
speechbrain [17] framework. For fixed track, to reduce the in-
terference of scene genres of speech on speaker embedding, a
variety of measures were considered. We tried various data pro-
cessing, different model structures, and special ways of score
normalization. For input samples, we determine the number
of times to input based on the length of the utterance. The
speech is randomly intercepted according to the specified du-
ration. This can significantly increase the number of times the
utterance is trained. The longer the utterance, the more times
the speech is involved in training. Our main contribution in this
track is the creative proposal of Dynet-ECAPA-TDNN and the
use of gradient reversal layer to reduce the interference of scene
information mismatch.

For open track, we tried three models, including ECAPA-
TDNN model with 512 channels, ECAPA-TDNN model with
1024 channels, and multi-branch feature aggregation method
based on multiple weighting (MBFG-MW), which adaptively
learns attention weights for each branch to extract discrim-
inative information that is beneficial to speaker verification.
MBFA-MW is the model we proposed previously. The three
models were first pre-trained on the Voxceleb datasets and then
fine-tuned on the Cnceleb datasets.

For the final score files submitted to fixed and open tracks,
we both performed a score fusion. The scores of each system



were first normalized. Then we considered fusion with average.
The rest of this paper is organized as follows. The section 2

mainly introduces the related work. Section 3 mainly describes
the methods and techniques we used in this competition. Sec-
tion 4 is the training protocol. The results of the experiments
are placed in section 5. There are some discussions about the
results in section 6. Finally, we draw some conclusions about
this paper and discuss some future prospects in section 7.

2. Related Work
2.1. ECAPA-TDNN

ECAPA-TDNN has been able to get good results in recent
years in all kinds of speaker verification competitions. So this
time we firstly try to run the model on the Cnceleb datasets.
Then make appropriate changes on top of that. ECAPA-TDNN
contains a Res2Net [18] module which could get informa-
tion through multi-scale receptive fields. ECAPA-TDNN also
uses the Squeeze-and-Excitation module [19] in the field of
vision that realizes information interaction between channels.
Res2Net and Squeeze-and-Excitation module together form a
SERes2Net block. In this competition, we tried ECAPA-TDNN
models with input channels of 512 and 1024.

2.2. Dynamic Convolution

It is well known that the convolution parameters are shared for
all samples. Dynamic convolution, however, can adaptively ad-
just the convolution parameters depending on the input sam-
ples. Some papers [20, 21, 22, 23, 24] have made develop-
ments and contributions to dynamic convolution. We applied
dynamic convolution to ECAPA-TDNN in this competition and
tried models with different number of convolution kernels to get
good results by improving the expression of convolution.

2.3. Gradient Reversal Layer

Although the effectiveness of speaker verification continues
to improve with the emergence of various new models and
techniques, domain mismatch remains a current challenge in
the field. A number of feature decoupling methods have also
emerged to address this problem [25, 26]. The gradient rever-
sal layer is used to perform data domain adaptation [27, 28].
Inspired by these methods, we come up with the idea of decou-
pling or fusion [29] the speaker embedding. By fusing scene in-
formation and speaker information, we can find that scene infor-
mation has a very bad effect on the results. The scores of some
models also show that the models do not have a good recogni-
tion rate for the genres of singing, movie, and drama. To elim-
inate the interference of scene information, we tried to adopt
auxiliary adversarial tasks to learn scene-invariant speaker rep-
resentations, connecting the speaker representation extraction
module and the scene classification module through a gradient
reversal layer.

3. Method
3.1. Dynet Block

For the Cnceleb datasets with complex scene information, we
think that the model should have stronger representational
power rather than a multi-scale receptive field.

In order to improve the expressibility of the model, we
replaced the Res2Net module with the dynamic convolution
module in SERes2Net block. We call this new block SE-

DynetBlock. The dynamic convolution module includes an at-
tention module to produce weights for the convolution layer. As
far as we know, although dynamic convolution has been devel-
oped for a long time, this is the first time it has been applied
in ECAPA-TDNN. The specific modifications can be seen in
Figure 1, where the Res2Net module in the original model is
replaced with a dynamic convolution module.

Dynamic convolution uses a set of K parallel convolution
kernels {W̃k, b̃k} instead of using one layer. Dynamic convo-
lution can give the aggregated K sets of weights to the convo-
lution layer. We have tried different values of K in our exper-
iments. For each sample x of the input, the corresponding at-
tention weights πk(x) are obtained by the attention mechanism.
The final aggregation equation is as follows.

W̃ =
∑
k

πk(x)W̃k (1)

b̃ =
∑
k

πk(x)b̃k (2)

Dynamic convolution is a nonlinear function that has
stronger representation capability compared to static convolu-
tion layers. At the same time, dynamic convolution is compu-
tationally efficient. This is because parallel convolution kernels
share an output channel after aggregation. So it does not in-
crease the depth or width of the model. All experiment results
are presented in section 5.

3.2. Feature Decoupling

Although the idea of using auxiliary tasks to help with speaker
verification come to mind. However, at first we are not sure
whether feature fusion would be beneficial to the experimental
results or feature decoupling would be effective to the experi-
mental results. So we tried feature fusion without gradient re-
versal and also tried adding it for feature decoupling. We also
want the modified model to adapt to the scene information do-
main. The use of the gradient reversal layer allows the gradi-
ent in scene classification to become the opposite number when
backward.

Specific details of the model can be found in Figure 2(b).
When we consider feature fusion, it is not necessary to add a
gradient reversal layer to the auxiliary task. Only a classifier
needs to be added after embedding to distinguish speaker scene
information. The aim of this approach is to be able to distin-
guish both speaker and scene information through embedding
for the purpose of feature fusion. The loss function of the model
after adding the auxiliary tasks is as follows.

Loss1 = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m) +
∑c

j=1,j ̸=yi
es·cosθj

(3)

Loss2 = − 1

N

N∑
i=1

log
e
s(cos(θy′

i
+m))

e
s(cos(θy′

i
+m)

+
∑n

j=1,j ̸=y′
i
es·cosθj

(4)
Loss = Loss1 + Loss2 (5)

where Loss1 denotes the loss in the speaker verification task
and Loss2 denotes the loss in scene classification. Both of these
loss functions use AAMsoftmax [30] loss. The speaker verifi-
cation system has a total of c class labels, and yi denotes the
class of the i-th sample. Similarly, the auxiliary task has a total
of n class labels, and y′

i denotes the class of the i-th sample.
And N denotes the total number of samples, cosθ denotes the



Figure 1: Res2Net Module And Dynamic Convolution Module. On the left, the Res2Net module in the original ECAPA-TDNN is
replaced with the dynamic convolution module shown on the right.

angle between the weights and features, m denotes the penalty
angle, and s is a hyperparameter that denotes the scaling factor.

When feature separation is considered, a gradient reversal
layer is added. In this case, the gradient back propagation for
update is shown below.

θf = θf − µ(
∂Loss1

∂θf
− δ

∂Loss2

∂θf
) (6)

where δ is a hyperparameter that represents the coefficient when
the loss of the auxiliary task is back-propagated. θf denotes the
model gradient. And µ means learning rate.

4. Training Protocol
4.1. Datasets

Following with the competition rules, in the fixed track we only
use the training and validation sets of the Cnceleb1 datasets and
the Cnceleb2 datasets. The noise datasets RIRS NOISE [31]
are also used to enhance data. In the open track, we use the pre-
training model trained on Voxceleb datasets. Then we fine-tune
the model on Cnceleb datasets.

4.1.1. Cnceleb1 [14]

The Cnceleb1 datasets contain nearly 1000 speakers, 11 speech
scenarios, and about 130,000 utterances. Most of the data are
taken from the Bilibili platform. As we have done in the past,
data below the specified duration are discarded. However, we
do not recommend this at this time. Data with a duration of
less than 2 seconds accounted for 32%, which is why we do not
recommend discarding data less than 3 seconds. According to
the evalution plan of the competition, a subset of 200 speak-
ers selected from Cnceleb1 are used as the evaluation set on
which the data scores of our entries were evaluated. Unlike the
Voxceleb datasets, the Cnceleb datasets incorporate a manual
checking step in the collection process. Therefore this datasets
have fewer errors.

4.1.2. Cnceleb2 [15]

The Cnceleb2 datasets complement the Cnceleb1 datasets.
There are more data, with nearly 2,000 speakers and 520,000
utterances. In addition to Bilibili, the data platform has added
Changba, Himalaya, NetEase Cloud and Tiktok. It is worth not-
ing that the dataset has not only speaker labels but also scene
labels.

4.1.3. RIRS NOISE [31]

This database contains simulated and real indoor impulses and
various noise data. It can be used to expand and enhance the
datasets. The noise datasets are considered because the data
in the Cnceleb datasets are closer to the real environment and
the data contain more reverberation, noise, and music. Adding
noise to the data can significantly improves the generalizability
of the model.

4.1.4. Voxceleb [16]

There are datasets on speaker verification in the English lan-
guage. We use this datasets on open track. Most of the data
come from YouTube. The data are essentially gender-balanced
(55% male). The celebrities had different accents, occupations,
and ages. There were no overlap between the development and
test sets. It is one of the more classic datasets in the field of
speaker verification.

4.2. Data Process

We used λ seconds fixed data for training. Data longer than λ
seconds are randomly intercepted. Data less than λ seconds are
discarded. This will result in discarding too much data. And
60 ∗ λ seconds of data is intercepted only once at random. This
is not reasonable. We believe that a reasonable way to train is
that the longer the data is, the more information it contains and
the more times it takes part in the training. So we determine



(a) Dynet-ECAPA-TDNN (b) ECAPA-TDNN with Auxiliary Task

Figure 2: Architecture of the model.

the number of times the data is randomly intercepted according
to the length of the data. All data longer than θ seconds are
retained. And 60 ∗ θ seconds of data was intercepted 60 times
at random. Each time, the interception is performed to the fixed
length λ.

4.3. Data Augmentation

In general, the more data you have, the better trained the model
is, and the more situations the data covers, the better the gener-
alization and robustness of the model will be. Therefore, we ex-
plore various data augmentation methods, which we hope will
alleviate the problem of dataset cross-scenario. Throughout the
fixed and open track experiments, we set batch size to 16 or 32
and use the following data augmentation.

• SpecAugment: SpecAugment modifies the spectrogram
by distorting the time domain signal, masking the fre-
quency domain channel, and masking the time domain
channel. This enhancement can be used to increase the
robustness of the network to counteract distortions in the
time domain and partial fragment losses in the frequency
domain.

• Speed peturbation [32]: A slightly slower or faster sig-
nal is realized by resampling the audio signal at a rate
similar to the original rate. Speech speed adjustment
with 0.95 as well as 1.05 times.

• Add reverse: Only reverberations are added to the raw
data.

• Add noise: Add only noise data to the original raw data.
The range of the generated signal-to-noise ratio is 0-15.

• Add reverse and noise: Add both noise data and rever-
beration data to the original raw data.

The above data augmentation methods are performed at the
same time. Therefore the data becomes six times of the original
when training.

4.4. Features

There are many kinds of features of speech, such as MFCC,
FBank. The response of the human ear to the sound spectrum
is nonlinear. The FBank feature is a kind of feature similar to
the one of human ear hearing. So in this experiment, we all
use FBank as input feature. The length (in ms) of the sliding
window used to compute the STFT is 25. The length (in ms)
of the hop of the sliding window is 10. Number of samples
to use in each stft is 400. Number of mel filters is 80. We
finally obtained 80 dimensions of FBank features for training
and testing.

4.5. Two Stages of Training

Inspired by the technique domain-based large margin fine-
tuning [33], we also used this two-stage training approach. Our
training solution is to start with θ=1,λ=2,for training. This has
the advantage of retaining most of the data. If the duration of the
speech does not reach λ, we will intercept the fragment of du-
ration λ by speech concatenation afterwards. We call this phase
the first stage. At this stage, the Adam optimizer with a weight
decay of 2e-6 was used. The learning rate scheduling algorithm
uses CyclicLR [34], with a maximum learning rate of 1e-3 and
a base learning rate of 1e-8. The step size is set to half of the
maximum number of iterations. We adopted AAMSoftmax loss
with a scale of 30 and the margin is 0.2.

After training a few epochs, set θ to 3, λ to 6, and train a
few more epochs. The intention is to use the primary data for
fine-tuning. We call this phase the second phase. The maxi-



mum learning rate changed from 1e-3 to 1e-4 and the margin of
AAMSoftmax changed from 0.2 to 0.4. Scale set to 60. With
these two phases of training, we can usually get better results.

Due to the large amount of data and long training time, we
found that most of the models can converge well in the second
epoches. Therefore most of the models are only trained for two
epoches.

4.6. Scores Normalization

Because the Cnceleb datasets are more close to the real environ-
ment, there are different scenario information. We use as-norm
[35] for score normalization during testing in order to reduce
the influence of various environmental differences between the
test speech and the enrolled speech on the scores.

4.7. Fixed track

According to evaluation plan, the purpose of this track is to
compare the effects of different algorithms on the same dataset.
We firstly tried ECAPA-TDNN. Then we tried various dynamic
convolution models and explored the effect of feature fusion
and feature decoupling on the results.In the score fusion phase,
we tried two approaches. One is to average the scores of mul-
tiple models, and the other is to use thresholds to determine
the corresponding weights for each score. We first average the
threshold values for each score file, and then each score is sub-
tracted from the threshold and the absolute value is taken. The
larger the absolute value, the more reliable this score is. The
absolute values are then passed through softmax to obtain the
corresponding coefficient weights. Then each score is linearly
weighted and summed.

4.8. Open track

For open track, we can use the whatever data we want. The pur-
pose of this track is to explore the current technology to achieve
the best results on Cnceleb datasets. In this track, we addition-
ally used the Voxceleb and noise datasets. As with the fixed
track, we also consider the use of a two-stage training approach.
Strategies such as score imputation and score fusion were also
used.

5. Results
This section focuses on the results of various experiments. It
is presented in two tracks. There are two main measures of
the experimental results, which are minimum Detection Cost
Function (minDCF) and Equal Error Rate (EER).

5.1. Fixed Track

In this track, we mainly use the training and validation sets of
Cnceleb1 and 2. And we redivide the test and validation sets
after merging them together. Add noise and reverberation us-
ing the RIRS NOISE datasets. The training is divided into two
stages.

The first stage uses data processed in the way θ=1,λ=2
and batch size=32. The loss function uses an Additive Angu-
lar Margin softmax (AAMsoftmax) with the margin= 0.2 and
scale s = 30 for cosine similarity.

And the second stage uses data processed in the way
θ=3,λ=6 and batch size=16. Also the loss function margin is
set to 0.4 and scale is set to 60. The models of the experiments
are as follows:

• ECAPA-TDNN: ECAPA-TDNN model with 512 chan-
nels.

• ECAPA-TDNN1024: ECAPA-TDNN model with 1024
channels.

• Dynet4-ECAPA-TDNN: The Res2Net module in the
original ECAPA-TDNN is replaced with the dynamic
convolution module. And 4 means the K value of the
dynamic convolution module.

• Dynet16-ECAPA-TDNN: The Res2Net module in the
original ECAPA-TDNN is replaced with the dynamic
convolution module. And the K value of the dynamic
convolution module is 16.

• Model+sn: Use scores normalization when doing tests.

The results of the first stage of the experiments are pre-
sented in Table 1 and the second stage in Table 2.

Table 1: The results of the first stage.

model min DCF(0.01) EER(%)
ECAPA-TDNN 0.5243 10.1915

Dynet4-ECAPA-TDNN 0.5132 9.9852
Dynet16-ECAPA-TDNN 0.5045 9.7549

ECAPA-TDNN1024 0.4891 9.3508
ECAPA-TDNN+sn 0.4955 9.6908

Dynet4-ECAPA-TDNN+sn 0.4885 9.5635
Dynet16-ECAPA-TDNN+sn 0.4845 9.3918

ECAPA-TDNN1024+sn 0.4761 8.9946

Table 2: The results of the second stage.

id model min DCF(0.01) EER(%)
A ECAPA-TDNN+sn 0.4584 9.9859
B Dynet4-ECAPA-TDNN+sn 0.4571 10.2715
C Dynet16-ECAPA-TDNN+sn 0.4498 10.0366
D ECAPA-TDNN1024+sn 0.4409 9.5522

We explored the effects of feature fusion and feature de-
coupling. The results of the experiments are placed in Table
3. Initially, we trained two epochs per model due to the long
training time. The model is explained as follows.

• ECAPA-TDNN+GRL+num: ECAPA-TDNN model
with 512 input channels. Gradient reversal layers were
also used. When the coefficient of the gradient rever-
sal layer is 1 (num = +1), it indicates feature fusion.
When the coefficient is negative, it indicates feature de-
coupling.

• ECAPA-TDNN+GRL+num+epoch3: Due to the long
training time, initially we only train 2 epochs per model.
However, considering that the training difficulty will in-
crease after adding auxiliary tasks, the number of train-
ing epochs should be increased appropriately. So we
trained one more epoch.

• Models+sn: Use scores normalization when doing tests.

• Models+second stage: As in the previous experiments,
we also tried to fine-tune the model on data of different
time lengths.



Table 3: The results of feature fusion and feature decoupling.

id model min DCF(0.01) min DCF(0.001) EER(%)
1 ECAPA-TDNN+GRL+1 0.6107 0.7463 12.2811
2 ECAPA-TDNN 0.5243 0.6430 10.1915
3 ECAPA-TDNN+GRL-1 0.5250 0.6456 10.0929
4 ECAPA-TDNN+GRL-0.1 0.5244 0.6510 10.4646
5 ECAPA-TDNN+GRL-0.01 0.5168 0.6384 10.5284
6 ECAPA-TDNN+GRL-0.001 0.5112 0.6345 10.2224
7 ECAPA-TDNN+GRL-0.0001 0.5125 0.6391 10.0551
8 ECAPA-TDNN+GRL-0.001-epoch3 0.5003 0.6235 10.0062
9 ECAPA-TDNN+GRL-0.0001-epoch3 0.5059 0.6383 9.7690
10 ECAPA-TDNN+GRL-0.0001+sn 0.4892 0.6097 9.5101
11 ECAPA-TDNN+GRL-0.001-epoch3+sn 0.4839 0.6103 9.4360
12 ECAPA-TDNN+GRL-0.0001-epoch3+sn 0.4886 0.6156 9.3562
13 ECAPA-TDNN+GRL-0.001-epoch3+sn+second stage 0.4453 0.5645 9.7895
14 ECAPA-TDNN+GRL-0.0001-epoch3+sn+second stage 0.4473 0.5748 9.8113

Fusion(13+14+C+D) 0.4227 0.5413 8.7524
Fusion with threshold(13+14+A+B+C+D) 0.4195 null 8.8710

5.2. Open Track

In the open track, we first use Voxceleb datasets for pre-training
and then fine-tune on Cnceleb datasets. Finally, a second fine-
tuning is performed using data of different time lengths. We
tried three models, including ECAPA-TDNN model with 512
input channels, ECAPA-TDNN model with 1024 input chan-
nels, and MBFA-MW. MBFA-MW is the model we proposed
previously. The results of the open track are placed in Table4.
After two stages of fine-tuning, a score fusion was performed
and a final 0.3706 minDCF was achieved.

Table 4: The results for open track. Model 4-6 are second stage.

id model min DCF(0.01) EER(%)
1 MBFA-MW 0.4306 8.0651
2 ECAPA-TDNN 0.4395 9.1072
3 ECAPA-TDNN1024 0.4097 7.8969
4 MBFA-MW 0.3905 8.1779
5 ECAPA-TDNN 0.3986 9.0416
6 ECAPA-TDNN1024 0.3812 8.2634

Fusion(4+5+6) 0.3706 7.3838

6. Discussion
In this section, we focus on the effect of the techniques used
on the experiments. Through the experimental results, we can
observe the improvement of each skill.

6.1. Effect of Dynamic Convolution

Both dynamic convolutions that we tried worked better than the
baseline ECAPA-TDNN. The first three experiments in Table1
show that dynamic convolution has a certain enhancement on
the experimental results, and the K parameter of dynamic con-
volution also has an effect on the experimental results. This
proves that the CNSRC2022 task, based on complex scene in-
formation, requires models with more powerful characterization
capabilities.

6.2. Effect of Gradient Reversal Layer

The results of the experiment are in Table3. ECAPA-
TDNN+GRL+1 denotes the experiment of feature fusion,
where the coefficient of the gradient reversal layer is set to 1. It
allows embedding to distinguish both the speaker and the scene.
However, compared with the baseline ECAPA-TDNN, the test
result changed from 0.52 to 0.61. This indicates that the scene
information will interfere with the efficiency of speaker verifi-
cation.

The coefficient of the gradient reversal layer is set to nega-
tive numbers in an attempt to perform feature decoupling. This
allows embedding to distinguish only the speaker, but not the
scene information. The experiments show that the coefficient
keeps changing while the results keep improving. Eventually
the results proved to be better when the coefficient is −0.001.
Subsequently, it was considered that the addition of auxiliary
tasks might increase the training difficulty. Therefore, one more
training epoch is need.

In the end, the best result of the gradient reversal layer
model reaches 0.5003. And 0.4453 is reached during the second
stage of fine-tuning.

This shows that it is beneficial to remove the interference of
scene information. The effect of the gradient reversal layer did
not meet the expectation. We will continue to do some research
in the future.

6.3. Effect of Scores Normalization

As can be seen in Table1, score normalization is a very effective
technique. Each model can be improved by 0.03 after score
normalization. Experimentally, score normalization is shown to
be effective in reducing the effect of environmental differences
between utterances.

7. Conclusion
In this paper, we present the models and techniques used by our
team in the CNSRC2022 competition. We find that the scene
information contained in the utterance interferes with the ef-
fect of speaker verification. We have two main contributions in
this competition. One is a creative modification of ECAPA-
TDNN including a dynamic convolution module to give the



model stronger representational capability. The second is the
use of gradient reversal layer to decouple the features and re-
duce the interference of scene information. We finally achieve
an 0.4195 minDCF in the fixed track and a 0.3707 minDCF in
the open track.

Although feature decoupling using the gradient reversal
layer get promoted, it did not achieve our expected results. Try-
ing a more efficient way of feature decoupling is the next direc-
tion of our work.
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