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Abstract
In this report, we provide description of our experimented sys-
tems on the CNCeleb dataset. The CNCeleb dataset provides
a difficult set of trial that were collected from multiple gen-
res of speech and consists of real-world adversaries, including
noise, overlapped background speakers, cross-channel, and short
durational test samples. In order to extract a reliable speaker em-
bedding vector under such harsh environment, we have trained
multiple systems with different training strategies and architec-
tures. More specifically, we have experimented with not only
the conventional ECAPA-TDNN or ResNet architectures, but
also the recently proposed multi-stream hybrid neural network.
Furthermore, we have trained the systems with speaker discrimi-
native losses, along with a domain generalization training strat-
egy. Our experimental results show that the hybrid architectures
can effectively improve the speaker verification performance
in a multi-genre scenario. Moreover, fusing different types of
hybrid systems further improved the performance, which indi-
cates that different hybrid architectures can learn complementary
speaker-dependent information to each other.

1. Introduction
In recent years, various research were done to build a reliable
automatic speaker verification (ASV) system, where the system
aims to verify whether the given speech is from the claimed
speaker or not. Usually, utterance-level fixed-dimensional vec-
tors (i.e., embedding vectors) are extracted from the enrollment
and test speech samples and then fed into a backend scoring
algorithm (e.g., cosine similarity, probabilisic linear discrimi-
nant analysis) to measure their similarity or likelihood of being
spoken by the same speaker. Current trends in ASV is to employ
depp learning architectures for extracting embedding vectors and
have shown good performance especially when a large amount
of speech data is available for training the system [1]. In [1, 2],
a speaker recognition model consisting of a time-delay neural
network (TDNN)-based frame-level network and a segment-
level network was trained and the hidden layer activation of the
segment-level network denoted as x-vector, was extracted as the
embedding vector. In [3], an ECAPA-TDNN architecture was
proposed, which has shown state-of-the-art performance by in-
troducing residual and squeeze-and-excitation (SE) components
to the widely used TDNN-based embedding system. In [4, 5], a
hybrid neural network (HNN) for speaker embedding extraction
was proposed, which not only employs different types of network
architectures (i.e., 2D-CNN, TDNN, LSTM) but also exploits
the short-durational statistics of the hidden representations for
bagging the instantaneous speaker-dependent information.

Despite the success of deep learning-based ASV systems in
well-matched conditions, the deep learning-based embedding

Table 1: Statistics of CNCeleb 1 & 2 data in terms of numbers
of speakers, recordings, total number of trials and target trials.

Train/Test sets # Speakers # Recordings # Trials # Target trials
CNCeleb1 train 797 107953 N/A N/A
CNCeleb2 train 1996 524787 N/A N/A

CNCeleb train (1 & 2) 2793 632740 N/A N/A
CNCeleb1 Eval 200 17973 3484292 17755

methods are vulnerable to the performance degradation caused
by mismatched conditions [6]. In a realistic scenario, there
could be numerous mismatches between the enrolled speech and
the test speech, including recording channels, environmental
noise, room conditions. Since such non-speaker attributes can
introduce different variability to the speech distribution, the ASV
performance usually degrades when the training or enrollment
speech samples are from a different domain than the test speech
samples. Therefore, many recent researches focused on building
a reliable ASV system for ”in the wild” speech recordings, where
the speech samples are collected from diverse sources (e.g., TV
shows, web uploaded videos) [7–10].

The CNCeleb benchmark [9, 10] provides a standard bench-
mark for evaluating ASV systems on adverse conditions. More
specifically, the CNCeleb benchmark consists of the following
challenges:

• The dataset consists of audio from multiple genres of
speech (e.g., interview, singing, movie, drama).

• The audio samples includes various real-life adversaries
(e.g., noise, background speakers, cross-channel, short
durational speech).

In order to solve these problems, we experimented with
several deep learning-based ASV systems with different archi-
tectures and training strategies. More precisely, we have ex-
perimented with not only the widely adopted ECAPA-TDNN
or ResNet systems, but also the recently proposed multi-stream
HNN and ensembled HNN architectures. Furthermore, to exploit
the complementarity of different architectures in terms of ASV,
we have performed score-level fusion to obtain the final score.

The rest of this paper is organized as follows: The datasets
used for training our systems are described in Section 2. In
Section 3, detailed information on the submitted systems are
described. Section 4 presents the results of the submitted systems
and Section 5 concludes the paper.

2. Dataset
The CNCeleb corpus [9, 10] is comprised of CN-Celeb 1 [9]
and CN-Celeb 2 [10] subsets and sampled at 16kHz with 16-bit
precision. Statistics of CNCeleb corpus is presented in Table 1
in terms train - eval splits, number of speakers, recordings and
evaluation trials.



For training our developed systems, we have used the train-
ing portions of the CNCeleb 1 & 2 datasets (i.e., CNCeleb train
as presented in Table 1), which consists of 2,793 speakers with
11 different genres (i.e., advertisement, drama, entertainment,
interview, live broadcast, movie, play, recitation, singing, speech,
vlog) [11]. For a detailed information about the CNCeleb dataset
please see [9, 10]. The evaluation subset of the CN-Celeb 1 [9]
dataset is used for reporting results.

For building all our systems for the Task 1 SV i.e, the fixed
track of the CN-Celeb Speaker Recognition Challenge 2022
(CNSRC 2022) we only used CNCeleb train (1 & 2) as presented
in Table 1 for training/tuning of various steps of our systems.

3. System description
3.1. Acoustic features

In our submitted systems, we have extracted 2 types of hand-
crafted acoustic features and used them as input:

• Mel-frequency cepstral coefficient (MFCC): 40-dimensional
Mel-frequency cepstral coefficients are extracted using
an analysis window of 25 msec with a frame shift of
10 msec. Features are normalized using cepstral mean
normalization over a window of 300 frames.

• Mel-filterbank spectrogram (MFB): 40-dimensional Mel-
spectrograms are extracted using an analysis window of
25 msec with a frame shift of 10 msec.

3.2. Data augmentation

The use of data augmentation in deep learning-based classifica-
tion task is ubiquitous. Data augmentation helps to increase the
size and diversity in the training data. It also helps the network
to achieve better generalization capability to unseen data. In
order to increase the robustness and generalization capability of
the embedding extraction network, multiple offline and on the
fly data augmentation techniques are applied before being fed
into the network.

3.2.1. Offline Data Augmentation

The offline data augmentation (on waveform-level) generates
supplementary data using the following strategies:

• Reverb: Artificially reverberate via convolution with sim-
ulated RIRs from the AIR dataset.

• Music: A single music file (without vocals) is randomly
selected from MUSAN, trimmed or repeated as necessary
to match duration, and added to the original signal (5-
15dB SNR).

• Noise: MUSAN noises are added at one second intervals
throughout the recording (5-15dB SNR).

• Babble: Three to seven speakers are randomly picked
from original training data, summed together, then added
to the original signal (13-20dB SNR).

For all the trained systems, we commonly apply above mentioned
offline augmentation to the input speech prior to the MFCC ex-
traction process [12]. So, all our developed systems use the
augmented CNCeleb train data (original CNCeleb train + sup-
plementary data generated over CNCeleb train).

3.2.2. Online Data Augmentation

For the MFB features, SpecAugment is applied on the fly, where
both time and frequency masking are performed. For a MFB fea-

Table 2: TDNN-based x-vector extractor architecture. T indi-
cates the duration of features in number of frames and d the
feature vector dimensionality. The last column indicates the size
of input and output in each layer.

Layer Layer Type Context Input → Output
1 TDNN-ReLU t-2:t+2 d × T → 512 × T
2 TDNN-ReLU t-2,t,t+2 512 × T → 512 × T
3 TDNN-ReLU t-3,t,t+3 512 × T → 512 × T
4 Dense-ReLU t 512 × T → 512 × T
5 Dense-ReLU t 512 × T → 1500 × T
6 Pooling (mean + stddev) 1500 × T → 3000
7 Dense-ReLU 3000 → 512
8 Dense-ReLU 512 → 512
9 Softmax 512 → # speakers

Table 3: Improved x-vector extractor architecture based on the
extended TDNN (ETDNN) backbone (1-9 layers). T indicates
the duration of features in number of frames and d the feature
vector dimensionality. The last column indicates the size of input
and output in each layer.

Layer Layer Type Context Input → Output
1 TDNN-ReLU t-2:t+2 d × T → 512 × T
2 Dense-ReLU t 512 × T → 512 × T
3 TDNN-ReLU t-2,t,t+2 512 × T → 512 × T
4 Dense-ReLU t 512 × T → 512 × T
5 TDNN-ReLU t-3,t,t+3 512 × T → 1500 × T
6 Dense-ReLU t 512 × T → 512 × T
7 TDNN-ReLU t-4,t,t+4 512 × T → 512 × T
8 Dense-ReLU t 512 × T → 512 × T
9 Dense-ReLU t 512 × T → 1500 × T

10 Pooling (mean + stddev) 1500 × T → 3000
11 Dense-ReLU 3000 → 512
12 Dense-ReLU 512 → 512
13 Softmax 512 → # speakers

ture sequence with n frames, the policy for time and frequency
masking are as follows:

• Frequency masking: for a randomly sampled f∼unif(
0, F ) and f0∼unif(0, d− f), the Mel-frequency chan-
nels [f0, f0 + f) are masked, where F is the frequency
mask parameter.

• Time masking: for a randomly sampled t∼unif(0, T )
and t0∼unif(0, n − t), the time steps [t0, t0 + t) are
masked, where T is the time mask parameter.

For the MFCC features, we have applied CepsAugment,
which is similar to the SpecAugment strategy. However, instead
of masking the MFB features, it is directly applied to the MFCC
features.

3.3. Speaker embedding architecture

In this paper, we adopted the following architectures, which have
shown competitive performance in the text-independent speaker
verification task:

• ResNetSE34 [13]: also known as the Fast ResNet, which
follows the same general structure as the original ResNet
with 34 layers (ResNet-34) [14] with squeeze-and-excitation
[15], but only uses one-quarter of the channels in each
residual block to reduce computational cost.

• ECAPA-TDNN [3]: an architecture that achieved state-of-
the-art performance in text-independent speaker recogni-
tion. The ECAPA-TDNN uses squeeze-and-excitation as
in the SE-ResNet, but also employs channel- and context-
dependent statistics pooling and multi-layer aggregation.



Figure 1: Schematic diagram of the hybrid neural network
(HNN) architecture as embeddings extractor for automatic
speaker verification task [4, 5]. The HNN backbone architecture
is shown inside the red dotted rectangle. Inside the black dot-
ted rectangle the TDNN-LSTM module is presented. Here, the
acronyms CNN, TDNN and LSTM stand for Convolutional Neu-
ral Network, Time Delay Neural Network and Long Short-Term
Memory, respectively [16, 17].

• HNN [4, 5]: a hybrid architecture that employs convo-
lutional neural network (CNN), TDNN, and long-short
term memory (LSTM) modules and global-local statistics
pooling layers.

• ETDNN-LSTM [16]: ETDNN-LSTM is similar to the
standard HNN, but does not employ any 2D-CNN layers.
From the ETDNN architecture, the second layer was
replaced with the LSTM layer and the local statistics
are appended as in the HNN.

• MSHNN [16,17]: MSHNN follows a similar backbone
structure with the HNN, but adopts a multi-stream scheme
to capture the speaker information latent in different tem-
poral resolutions.

• ENSEMBLE [16, 17]: ensembled embedding extractor
architecture that incorporates different hybrid backbone
networks in a parallel manner.

3.3.1. Hybrid neural network (HNN)

An overview of the HNN embedding extractor is presented in
Figure 1 that employs CNN, TDNN, LSTM networks and global-
local statistics pooling layers. The key motivation behind using
hybrid networks in numerous speech processing applications
is to catch the complementary information that exists among
CNN, LSTM, TDNN, and DNN modules. In Figure 1, the HNN
backbone architecture is depicted inside the red dotted rectangle.

3.3.1.1. 2D-CNN-based feature extraction module
In order to make sure that the hybrid network can capture the

temporal-spectral correlations within the speech, the HNN uses
2D-CNNs to process the input Mel-FilterBank (MFB) features
over which SpecAugment [18] is applied on the fly, where both

time and frequency masking are performed. By passing the input
augmented MFB features (after applying SpecAugment) through
a stack of 5 2D-CNN layers, frame-level representations with
information on not only the relation between the local frames,
but also the local frequency bins could be obtained.

3.3.1.2. TDNN-LSTM-based frame-level network
The 2D-CNN module is then followed by a frame-level net-

work which is composed of TDNN and LSTM layers, to extract
local descriptors with sufficient temporal information for speaker
discrimination. In Figure 1 the TDNN-LSTM-based frame-level
network is shown inside the black dotted rectangle. The frame-
level network used in the HNN is similar to the TDNN-LSTM
approach presented in [19], where the second TDNN layer of
the standard x-vector [20] is replaced with a LSTM layer.

3.3.1.3. Multi-level global-local statistics pooling
In the HNN architecture, a multi-level statistics pooling (MLSP)

[21] was employed for aggregating statistics from the last layers
of CNN, LSTM and TDNN blocks in order to capture speaker
specific information from different spaces and learn more dis-
criminative utterance level representations by bagging comple-
mentarity available in CNN, LSTM and TDNN networks. Sim-
ilar to the standard x-vector, the HNN extracts the first- and
second- order statistics. However, unlike the conventional x-
vector, the HNN extracts the statistics not only globally, but also
locally to exploit the short-durational correlation. While the
global statistics pooling is done in the same manner with the
standard x-vector, the local statistics pooling is done within a
short durational moving window similarly to the speech activity
detection proposed in [22]. Each module (i.e., TDNN, LSTM)
takes both the frame-level outputs from the previous model, and
the local statistics extracted from them as input. During the local
statistics pooling operation, the input sequences are resampled
and the pooling window shift rates are adjusted to match the
sequence length with the frame-level features.

After propagating the input features to the frame-level net-
work, a global statistics pooling is performed to aggregate the
local descriptors obtained from the TDNN and LSTM blocks.
The global first- and second- order statistics are concatenated to
a fixed-dimensional utterance-level representation.

The pooled statistics are then projected into a 512-dimensional
embedding vector via two fully-connected layers. Once the
training is completed, the embeddings are extracted from the
fully-connected layer close to the global statistics pooling layer.

3.3.2. Multi-stream hybrid neural network (MSHNN)

As presented in Figure 2, the MSHNN system follows a similar
backbone structure with the standard HNN, where the network
is composed of 2D-CNN, TDNN-LSTM, and TDNN blocks.
However, unlike the standard HNN, which only consists of one
TDNN-LSTM block, the MSHNN employs multiple TDNN-
LSTM blocks to capture the speaker information latent in dif-
ferent temporal resolution. More specifically, after processing
the input acoustic feature with 5 layers of 2D-CNN layers, the
CNN output along with its local statistics are branched out to
3 different streams, where each stream process consists of a
TDNN-LSTM block with a unique dilation rate [16, 17]. The
outputs from the different streams are then concatenated to each
other, and then fed into the following TDNN layers as in the
standard HNN framework.

Like the HNN architecture, a multi-level statistics pooling
(MLSP) [21] is also employed in the MSHNN framework for



Figure 2: Schematic diagram of the Multi-Stream Hybrid Neural
Network (MSHNN) architecture as embeddings extractor for
automatic speaker verification task [16, 17].

pooling statistics from the last layers of CNN, TDNN blocks,
as shown in Figure 2, to capture speaker specific information
from different spaces and learn more discriminative utterance
level representations by bagging complementarity available in
different networks. The global first- and second- order statis-
tics are concatenated to obtain fixed-dimensional utterance-level
representations which are then projected into a 512-dimensional
embedding vector via two fully-connected layers. When train-
ing is completed the embeddings are extracted from the fully-
connected layer adjacent to the global statistics pooling layer.

3.3.3. Ensembled embedding extractor

The ensemble embedding extractor architecture, denoted as EN-
SEMBLE, incorporates multiple hybrid backbone networks in
parallel manner. In this paper, we have experimented with 3
different configurations for ENSEMBLE.

Figure 3 depicts the architecture for ENSEMBLE-1, which
ensembles the standard HNN and ETDNN-LSTM [17]. The
global multi-level statistics pooling is performed from the last
layers of the two hybrid backbone architectures to capture speaker
specific information from different modules and learn more dis-
criminative utterance level representations by bagging comple-
mentarity available in these parallel backbone networks. The
global first- and second- order statistics are concatenated to ob-
tain fixed-dimensional utterance-level representations which are
then projected into a 512-dimensional embedding via two fully-
connected layers. The embeddings are normally extracted from
the fully-connected layer near the global statistics pooling layer.

The ENSEMBLE-2 and ENSEMBLE-3 follows the same
general framework with ENSEMBLE-1, but ensembles 3 differ-
ent architectures:

• ENSEMBLE-2: ensembles HNN, ETDNN-LSTM, and
ETDNN [16].

• ENSEMBLE-3: same as ENSEMBLE-2 [16] but ensem-
bles HNN, TDNN-LSTM, and TDNN.

The detailed architecture for the TDNN and ETDNN can be
found in Table 2 and Table 3, respectively. The general architec-
ture for ENSEMBLE-2 is shown in Figure 4.

3.4. Training objectives

3.4.1. Softmax-based objectives

In this paper, we trained the systems using two softmax-based
objectives, including the standard softmax cross-entropy and the
angular additive margin softmax (AAMSoftmax) objectives [23].

The AAMSoftmax objective is formulated as follows:

LAAMSoftmax = − 1

N

N∑
i=1

log(
es(cos(θyi,i+m))

K1
), (1)

where K1 = es(cos(θyi,i+m)) +
∑C

j=1,j ̸=i e
scosθj,i , N is the

batch size, C is the number of classes, yi corresponds to label
index, θj,i represents the angle between the column vector of
weight matrix Wj and the i-th embedding ωi, where both Wj

and ωi are normalized. The scale factor s is used to make sure
the gradient is not too small during the training and m is a
hyperparameter that encourages the similarity of correct classes
to be greater than that of incorrect classes by a margin m.

3.4.2. MIM-DG: Mutual information minimization-based do-
main generalization

The MIM-DG regularization strategy [24] aims to extract an
embedding ω from the input speech X with maximum speaker-
dependent information while suppressing the nuisance informa-
tion (e.g., genre). To maximize the speaker information within
the embedding vector, the embedding network is trained to mini-
mize the cross-entropy-based loss function, such as AAMSoft-
max given the speaker embedding and the speaker labels.

3.4.2.1. Mutual information upper bound and Conditional
likelihood estimation via Normalizing Flow

Given the embedding vector ω and its corresponding genre
label c, to minimize I(ω; c), we aim to estimate and minimize
the upper bound of the mutual information via the CLUB for-
mulation [25]. However, in order to achieve this, we need to
estimate the conditional likelihood p(ω|c).

For this purpose, a generative model is employed, more
specifically a normalizing flow model called Real NVP (Real-
valued Non-Volume Preserving) [26]. Once the RealNVP model
is trained, we can estimate the mutual information upper bound
as follows:

Lnuisance =Ep(ω,c)[log pω(ω|c)]
− Ep(ω)p(c)[log pω(ω|c)],

(2)

where log pω(ω|c) is the conditional log-likelihood estimated
using the conditional RealNVP.

3.4.2.2. Training strategy
In the MIM-DG framework [24], the embedding network is

trained where the discriminability of the embedding ω in terms
of the speaker label y is maximized while the mutual information
between ω and the genre label c is minimized. To accomplish



Figure 3: Schematic diagram of the ENSEMBLE-1 system. This embedding extractor employs two hybrid backbone architectures,
namely the HNN (hybrid neural network) backbone and the extended TDNN-LSTM (ETDNN-LSTM) backbones, in parallel fashion. In
this Figure the HNN backbone module is marked by the red dashed rectangle and inside the black dashed rectangle is the ETDNN-LSTM
backbone architecture [17].

Figure 4: Schematic diagram of the ENSEMBLE-2 system. This embedding extractor employs three hybrid backbone architectures,
namely the HNN (hybrid neural network) backbone, extended TDNN (ETDNN) and the ETDNN-LSTM backbones, in parallel fashion.
In this Figure the HNN backbone module is marked by the red dashed rectangle and inside the black dashed rectangle is the ETDNN-
LSTM backbone architecture [16].



Table 4: The experimental results of the deep embedding systems on the CNCeleb1 evaluation sets in terms of EER and minimum
detection cost functions (minDCF)

# Architecture Input feature Training objective Backend EER [%] minDCF
Baseline TDNN MFCC Softmax PLDA 14.18 0.6407

1 ResNetSE34 MFB AAM-Softmax Cosine similarity 11.61 0.6692
2 ResNetSE34 MFB AAM-Softmax PLDA 10.71 0.5840
3 ECAPA-TDNN MFCC AAM-Softmax Cosine similarity 11.84 0.4955
4 ECAPA-TDNN MFCC AAM-Softmax + MIM-DG Cosine similarity 11.79 0.4914
5 HNN MFB Softmax LDA (175) + PLDA 8.99 0.4881
6 ENSEMBLE-3 MFCC Softmax LDA (130) + PLDA 8.68 0.4903
7 ENSEMBLE-3 MFCC Softmax LDA (180) + PLDA 8.96 0.4723
8 ENSEMBLE-2 MFCC Softmax LDA (180) + PLDA 8.87 0.4740
9 ENSEMBLE-2 MFCC Softmax LDA (220) + PLDA 8.91 0.4694
10 ENSEMBLE-1 MFCC Softmax LDA (130) + PLDA 8.69 0.4920
11 ENSEMBLE-1 MFCC Softmax LDA (160) + PLDA 8.73 0.4837
12 ETDNN-LSTM MFCC Softmax LDA (190) + PLDA 10.18 0.5208
13 MSHNN MFB Softmax LDA (200) + PLDA 9.05 0.4708
14 ENSEMBLE-3 MFCC Softmax LDA (150) + PLDA 8.72 0.4893
15 ENSEMBLE-2 MFCC Softmax LDA (220) + PLDA 8.85 0.4688
16 ENSEMBLE-2 MFCC Softmax LDA (130) + PLDA 8.68 0.4905
17 HNN MFB Softmax LDA (190) + PLDA 9.08 0.4855
18 ETDNN-LSTM MFCC Softmax LDA (250) + PLDA 10.10 0.5202
19 ENSEMBLE-2 MFCC Softmax LDA (250) + PLDA 8.97 0.4706

Score-level fusion of #5, #7, #9, #11, #13, #15, #17, #19 8.22 0.4504

this, the MIM-DG optimizes the network with the following ob-
jective function, which incorporates a speaker discriminant loss
Lspeaker and a mutual information regularization loss Equation
2:

LMIM−DG = −Lspeaker + βLnuisance, (3)

where β is a predefined coefficient. In our experiment, we used
β = 0.001.

The MIM-DG training is done in a 2-stage process: embed-
ding network update and RealNVP update. In the embedding
network update phase, we freeze the RealNVP parameters and
estimate the conditional likelihoods to compute Lnuisance. Then
the embedding network and classification network parameters
are updated through LMIM−DG = −Lspeaker + βLnuisance.
In the RealNVP update phase, the embedding network param-
eters are frozen and the embeddings are extracted. Given the
training data and their corresponding embeddings, the RealNVP
is updated via likelihood maximization.

4. Results
Table 4 shows the performance of the experimented systems
on the CNCeleb1 evaluation set. As shown in the results from
System 1 and 2, the probabilistic linear discriminant analysis
(PLDA) backend was more effective than the simple cosine simi-
larity scoring on the CNCeleb dataset. This may be attributed to
the PLDA’s well known strength in domain mismatched condi-
tion, as the CNCeleb evaluation set consists of cross-genre trials.
Moreover, from System 3 and 4, we could see that the MIM-DG
strategy can improve the performance by disentangling the genre
information from the speaker embedding vectors.

In terms of the architecture, it could be seen that the hybrid
systems (i.e., HNN, ETDNN-LSTM, ENSEMBLE) generally
performs much better than the standard ResNetSE34, TDNN and
ECAPA-TDNN systems. This tells us that the hybrid architec-
tures can effectively extract the speaker information even from
an adverse condition, which may be accredited to the hybrid

systems’ capability to capture the time-frequency correlation in
a long temporal context. While the standard HNN and MSHNN
system was able to outperform the baseline system, ensembling
multiple hybrid architectures (i.e., ENSEMBLE-1, ENSEMBLE-
2, ENSEMBLE-3) further improved the performance. Among
the individual systems, the best performance was achieved by
the ENSEMBLE-3 system with 130 dimensional linear discrimi-
nant analysis (LDA) and PLDA backend (i.e., System 6), which
outperformed the standard TDNN baseline with a relative im-
provement of 38.79% in terms of EER.

We have also applied score-level fusion across different sys-
tems. With a simple sum fusion scheme, where the scores from
different systems are aggregated via summation, the best perfor-
mance was achieved by fusing System 5, 7, 9, 11, 13, 15, 17,
and 19, which consists of HNN, ENSEMBLE-1, ENSEMBLE-2,
ENSEMBLE-3, and MSHNN architectures. The best performing
fused score outperformed the best performing individual system
(i.e., System 6) with a relative improvement of 5.3% in terms of
EER. This indicates that different hybrid architectures can learn
complementary speaker-dependent information to each other.

5. Conclusion
In this report, we described our experimented systems on the
CNCeleb dataset. The CNCeleb benchmark provides a diffi-
cult set of trials where the speech samples are collected from
multiple genres of videos and consists of several challenging
real-world adversaries. In order to overcome these problems,
we experimented with several deep learning-based automatic
speaker verification (ASV) systems with different architectures
and training strategies, including the recently proposed hybrid
architecture-based systems and MIM-DG strategy. Our exper-
imental results showed that the hybrid systems can effectively
capture the speaker information even in a cross-genre scenario,
and ensembling multiple hybrid systems further improved the

*Systems #5 to #19 were designed and developed by J. Alam



performance. Simple score-level fusion of different ensembled
hybrid systems showed the best performance, which indicates
that different hybrid architectures can learn complementary in-
formation relevant to the ASV task.

In our future studies, we will focus on applying a more
sophisticated fusion method for exploiting the complementarity
between different hybrid systems. Moreover, we will analyze
the effect of genre information on the performance of the hybrid
ASV systems.
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