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ABSTRACT 

Our submission to the track 1 of the CN-CELEB Speaker 

Recognition Challenge 2022 (CNSRC 2022) is described by 

this report. The track 1 task only uses the CN-Celeb training set 

for training/tuning the system. The objective of this task is to 

improve performance on the standard CN-Celeb evaluation set. 

Based on the state-of-the-art SEResnet speaker embedding 

network, we explore a novel network architecture with split-

attention, called ResNeSt, and novel hybrid statistics pooling 

methods. Based on these techniques, we achieve significant 

improvement over the SEResnet baselines. Furthermore, in-

domain data finetuning, attention back-end methods, speaker-

wise adaptive score normalization (AS-Norm) and score 

calibration on duration efficiently improve the robustness. 

Finally, our system is a fusion of 23 models and achieves 

eleventh place in the track 1 of CNSRC 2022. The minDCF of 

our submission is 0.4159, and the corresponding EER is 

7.333%.  

1. DATA 

1.1. Training data 

According to the evaluation plan of CNSRC 2022, the track 1 

task is a fixed training condition where the system should only 

be trained using the CN-Celeb training set [20]. It consists of 

632740 utterances from 2793 speakers. It is forbidden to use 

any other public or private speech data for training. 

1.2. Test data 

The enrollment data consists of 196 utterances from 196 

speakers. The test data consists of 17777 utterances from 200 

speakers. 3484292 trials are sampled from the CN-Celeb test 

dataset with only 200 speakers. Each trial in the test set contains 

a test utterance and a target model. The enrollment data for 

target model consists of one utterance.  

1.3. Data preparation 

In our experiments, we make use of all allowed training data 

with speaker label as our training data, totally 2793 labeled 

speakers. It is also used for training back-end models such as 

PLDA and attention back-end models. We extracted 81-

dimensional log Mel filter bank energies based on Kaldi [13]. 

The window size is 25 ms, and the frame shift is 10 ms. 200 

frames of features were extracted with energy-based voice 

activation detection (VAD). 

2. MODELS 

In this section, we will introduce the embedding extractors, 

pooling methods, finetuning strategies and several post-

processing methods used in our system. In our experiment, the 

embedding extractors are firstly trained on all the available data 

for task1 in a text-independent mode. Then, we fine-tune the 

pre-trained models using in-domain data. Finally, post-

processing methods are used to further improve the system 

performance. Compared with a regular SEResnet baseline, we 

propose our improvement on the network, pooling and scoring 

in the subsequent sections. 

2.1. Network Structures 

2.1.1. Baseline SEResnet Models 

  

Figure 1. the architecture of basic block in SEResnet 

model and the structure of the SE block. 

In speaker verification, the embedding extraction is mainly 

based on the Residual Neural Network (ResNet) architecture. 

ResNet is built on convolution layers. Unfortunately, the 

convolution layer does not exploit the dependencies between 

feature maps. For solving the problem, a channel attention 

mechanism called squeeze-and-excitation (SE), has recently 

been proposed in convolution layers and applied to speaker 

verification. We use ResNet with Squeeze-and-Excitation (SE) 

layer as our baseline model [4]. 

There are 4 basic blocks in a SEResnet model. Figure 1 

depicts the architecture of basic block in SEResnet model and 
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the structure of the SE block. First, we produce a global 

information of each channel using a pooling layer. The pooling 

layer aggregates feature maps across their spatial dimension to 

a single numeric value. Thus, a vector of size 𝑛 is obtained 

where 𝑛  is equal to the number of feature maps. Then, the 

vector is introduced into a two-layer full connection neural 

network. A 𝑛 dimensional output vector is obtained. These 𝑛 

values can now be used as weights on the original feature maps, 

scaling each channel based on its importance. The pooling layer 

plays a central role in the SE strategy. 

The SE block can be simply integrated in CNN by inserting 

after the non-linearity following each convolution. In the case 

of ResNet, the classical integration strategy is to insert SE block 

after the final convolutional layer and before the skip 

connection branch. The idea to integrate the SE block before 

the skip connection branch, is to avoid noise in the skip 

connection branch and facilitate the learning of identity. 

2.1.2. ResNeSt Models 

  

Figure 2. the architecture of basic block in ResNeSt 

model and the implementation of a split-attention 

block in the basic block. 

The baseline SEResnet Model introduces a channel attention 

mechanism by adaptively recalibrating the channel feature 

responses. Inspired by the previous methods, ResNeSt network 

[14] integrates the channel-wise attention with multi-path 

network representation. The method captures cross-channel 

feature correlations, while preserving independent 

representation in the meta structure. A set of transformations is 

performed by a module of our network on low dimensional 

embeddings. The module concatenates their outputs as in a 

multi-path network. Such a computation block is called as a 

split-attention block. Stacking several split-attention blocks in 

ResNet style, we create a new ResNet variant which we refer to 

as split-attention network (ResNeSt). 

Figure 2 give an overview of the split-attention block in 

ResNeSt models. The input featuremap is first divided into RK 

groups. In our experiments, 𝑅 and 𝐾 are set to 4 and 2. In this 

graph, the groups with same radix-index reside next to each 

other. Then, a summation is conducted across different splits, 

so that the featuremap groups with the same cardinality-index 

but different radix-index are fused together. A global pooling 

layer aggregates over the spatial dimension, while keeps the 

channel dimension separated, which is identical to conducting 

global pooling to each individual cardinal groups then 

concatenate the results. We can gather global contextual 

information with embedded channel-wise statistics with global 

average pooling across spatial dimensions. Then two 

consecutives fully connected (FC) layers with number of 

groups equal to cardinality are added after pooling layer to 

predict the attention weights for each split.  

The idea of sequeeze-and-excitation is to employ a global 

context to predict channel-wise attention factors, first 

introduced in SE-net [15]. In this work, our method generalizes 

prior work of featuremap attention block within a group setting 

and remains computationally efficient. 

2.2. Pooling Methods 

2.2.1. Attentive statistics pooling 

According to [5], attentive statistics pooling methods aim to 

capture the temporal information focusing on the importance of 

frames. In order to make the attention discriminate features 

from multiple aspects, an attention model calculates a scalar 

score 𝑒𝑡
𝑖  for each frame in a multi-resolution and multi-head 

way, as follows: 

 𝑒𝑡
𝑖 =

(v𝑖
𝑇𝑓(𝑤𝑖ℎ𝑡 + 𝑏𝑖) + 𝑘𝑖)

𝑁𝑖
⁄ ,∀𝑖 ∈ {1,… , 𝐼}  (1) 

where 𝑓(∙) is a non-linear activation function, such as tanh or 

ReLU, 𝐼  is the number of attention heads, and 𝑁𝑖  is 

temperature. Different heads have different temperature. The 

scores are normalized over all frames with a softmax function 

as follows: 

 𝛼𝑡
𝑖 =

exp(𝑒𝑡
𝑖)

∑ exp(𝑒𝜏
𝑖)𝑇

𝜏
  (2) 

Note that the softmax is performed along the temporal axis. 

2.2.2. Self-attentive pooling 

In [9, 16], the authors used a more rigorous formulation based 

on a {value, key, query} tuple to construct the so-called self-

attentive pooling mechanism. 

Considering an input sequence [ℎ1, ℎ2, … , ℎ𝑇], where 𝑇 is 

the length of the input sequence. The model transforms the 

input sequence into the query 𝑞𝑖  as follows: 

 𝑞𝑖 = 𝑤𝑞
𝑖𝑔(ℎ𝑡) (3) 

where 𝑔(∙) is statistics pooling function, and 𝑤𝑞
𝑖  is a trainable 

parameter. 

As for key-value pairs, in order to reduce the number of 

model parameters, the input sequence  [ℎ1, ℎ2, … , ℎ𝑇]  is 
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directly assigned to the value sequence [𝑣1, 𝑣2, … , 𝑣𝑇] without 

any extra computation. The key vector 𝑘𝑡 with 𝑑𝑘 dimensions 

is obtained by a linear projection with a trainable parameter: 

𝑘𝑡 = 𝑊𝑘ℎ𝑡 (4) 

where 𝑊𝑘 is a trainable parameter. A scalar score is computed 

via scaled dot-product attention as: 

𝑢𝑡
𝑖 =

(
𝑞𝑖∙𝑘𝑡

√𝑑𝑘
)

𝑁𝑖
⁄

,∀𝑖 ∈ {1,… , 𝐼} (5) 

The scores are normalized over all frames with a softmax fun-

ction as follows: 

𝛽𝑡
𝑖 =

exp(𝑢𝑡
𝑖)

∑ exp(𝑢𝜏
𝑖 )𝑇

𝜏
 (6) 

Note that the softmax is performed along the temporal axis. 

2.2.3. Hybrid statistics pooling 

By exploiting the advantage of two attention combination, we 

compute a hybrid weight: 

𝛾𝑡
𝑖 =

(𝛼𝑡
𝑖 + 𝛽𝑡

𝑖)
2
⁄  (7) 

The 𝑖-th weighted mean vector 𝜇𝑖 can be calculated by sum-

ming up the element-wise products of each frame-level vector 

ℎ𝑡 and the hybrid weight 𝛾𝑡
𝑖: 

 𝜇𝑖 = ∑ 𝛾𝑡
𝑖ℎ𝑡

𝑇
𝑡=1  (8) 

And the 𝑖-th weighted standard deviation vector 𝜎𝑖 can be 

acquired as follows: 

 𝜎𝑖 = √∑ 𝛾𝑡
𝑖ℎ𝑡⨀ℎ𝑡 − 𝜇𝑖⨀𝜇𝑖𝑇

𝑡=1  (9) 

Finally, the utterance-level representation 𝐸 of the hybrid 

statistics pooling layer is the vector concatenating 𝜇𝑖 and 𝜎𝑖 in 

all 𝐼 attention heads: 

 𝐸 = [𝜇1; … ; 𝜇𝐼; 𝜎1; … ; 𝜎𝐼] (10) 

2.3. Model Finetune 

To further improve system performance on test data, we 

finetune the models with training data. In practice, we fix the 

parameter of the speaker network except loss functions and 

retrain the model. The AM-Softmax loss was replaced by 

AAM-Softmax loss. The margin is increased from 0.2 to 0.5. 

2.4. Scoring 

The trained networks are evaluated on the CN-Celeb test 

dataset. We compared three different scoring methods on the 

trained models. Firstly, we use a cosine similarity method to 

measure whether the two utterances are from the same speaker 

after the embeddings are extracted. Secondly, we use PLDA 

[10] for scoring. PLDA models are trained on labeled speakers 

after the speaker embeddings are extracted. Finally, to make 

better use of intra-relationships of the utterances, a novel 

attention back-end model [11] is applied. A balanced batch 

strategy is adopted to train the attention back-end model. For 

each mini-batch, assuming it has 𝑀  speakers and 𝐾  speaker 

embeddings per speaker, the size of one mini-batch is 𝑀 ×𝐾. 

In our experiment, 𝑀 and 𝐾 are set to 256 and 5. 

2.5. Score calibration 

According to [17], the speaker similarity score is largely 

affected by the quality of the trial speeches. Hence, the quality 

function mainly based on the duration of the test speech is 

applied. Assuming speech duration for enrollment is long 

enough, the rescoring method is as follows: 

 �̂� = 𝑆 + 𝐶 ∙ 𝑓(𝑑𝑡) (11) 

where 𝑆  is the raw score, 𝐶  is a scaling constant, 𝑑𝑡  is the 

duration (in seconds) of test speech in scoring trial, and 𝑓 is the 

duration-based quality function: 

 𝑓(𝑑𝑡) =
1

𝑑𝑡
 (12) 

The optimal value of 𝐶 is 0.21 or 1.2 in our final fusion systems. 

3. RESULTS 

The main performance metric adopted by CNSRC challenge is 

normalized minimum Detection Cost Function (MinDCF). 

Besides, the equal error rate (EER) is also a very important 

performance metric in speaker verification. 

3.1. Compare of SEResnet and ResNeSt 

Table 1. Compare of SEResnet and ResNeSt 

Methods 
CN-Celeb evaluation set 

EER(%) MinDCF(0.01) 

SEResnet-34 10.96 0.5313 

ResNeSt-34 10.15 0.5219 

ResNeSt-50 9.901 0.5151 

SEResnet-34+ 

attentive statistics pooling 
10.54 0.5194 

SEResnet-34+self-

attentive statistics pooling 
10.22 0.5193 

SEResnet-34 

+Hybrid statistics pooling 
10.08 0.5115 

ResNeSt-50 

+Hybrid statistics pooling 
10.17 0.5193 

The performance of SEResnet model (baseline) and ResNeSt 

model is described in Table 1 respectively. It can be found that 

ResNeSt-34 performs better than SEResnet-34 under the same 

training strategy, improved by 7%/2% in EER/MinDCF 

compared with the former. After increasing the depth of the 

ResNeSt, ResNeSt-50 further improves the performance both 

in EER and MinDCF. Experiments indicate the importance of 

using ResNeSt-50. Additionally, by substituting for other 

statistics pooling [1, 5, 9] with hybrid statistics pooling, 

SEResnet-34 achieve substantial performance improvement. 

But no performance superposition was gained by ResNeSt-50. 

3.2. Ablation study 

In this subsection, we show our detailed ablation study on our 

ResNeSt-50 system. The ResNeSt-50 backbone is followed by 

statistics pooling and AM-Softmax. As Table 2 shows, our 



ResNeSt-50 system’s performance improved significantly on 

various trials by stacking our proposed methods gradually. 

First, we conducted our ablation studies by adding model 

finetune. The MinDCF was improved from 0.5151 to 0.5141. 

Using attention back-end models instead of cosine similarity 

methods, the EER further achieved 9.541%, and the MinDCF 

was 0.5044. The procedures above already boosted our 

ResNeSt-50 system’s EER by relatively 3.64% and MinDCF 

by relatively 2.08%. Applying the speaker-wise AS-Norm 

further achieved 9.456% EER and 0.5026 MinDCF. The final 

score calibration process got 9.389% EER and 0.5014 minDCF. 

After completing the ablation study, our ResNeSt-50 system 

improved EER relatively 5.17% and minDCF relatively 2.66% 

in total. 

Table 2. Ablation Study on ResNeSt-50 

Methods 
CN-Celeb evaluation set 

EER(%) MinDCF(0.01) 

ResNeSt-50 9.901 0.5151 

ResNeSt-50 

+ Model Finetune 
9.901 0.5141 

ResNeSt-50 

+ Model Finetune 

+attention back-end model 

9.541 0.5044 

ResNeSt-50 

+ Model Finetune 

+ attention back-end model 

+asnorm 

9.456 0.5026 

ResNeSt-50 

+ Model Finetune 

+ attention back-end model 

+asnorm 

+ score calibration (C=0.21) 

9.389 0.5014 

 

3.3. Sub-Systems and Fusion Performance 

All our sub-systems were described in Table 3. A total of 23 

different styles were used to generate different representations. 

We found that a large model, such as ResNeSt-50, seemed to 

yield a better result compared to smaller models like our 

baseline system. ResNeSt-50 achieves the best performance 

both in EER and MinDCF by applying all these strategies, as it 

shows in system 13 and 14. It is worth mentioning that our 

ResNeSt-50 system with attention back-end models achieved a 

0.5014 minDCF and 9.389% EER while our ResNeSt-50 

system with cosine similarity methods achieved a 0.4979 

minDCF and 9.518% EER. Based on the ResNeSt-50, system 

15 to system 19 also obtained good results using different 

pooling methods and different scoring methods. 

Comparing the results of system 1 to system 5, we can find 

that the novel network architecture with split-attention and 

hybrid statistics pooling methods improve the system 

performance respectively.  

System 6 is a conventional ECAPA-TDNN model. System 

7 is a standard Xi-Vector embedding method. System 8 is an 

efficient RESNET-34 system. They are built by ASV-Subtools 

[18]. System 9 and 10 are implemented by kaldi tools [13]. 

System 20 to system 23 are established by sunine tools, which 

has been published at https://gitlab.com/csltstu/sunine by 

Lantian Li et al. The MinDCF and EER of these systems are 

much worse compared to system 11 and 12, but they all 

contribute to the fusion system. Additionally, system 6 and 23 

have the same model structure, but they are customized by 

different tools. System 10 and 20 are also like this. ResNet34L 

uses 16 base channels while ResNet34 uses 32 base channels. 

Additive noise from MUSAN corpus [21] and room impulse 

response (RIR) simulation [22] are used as data augmentation 

in system 10 and 19. 

The fusion system is a score-level fusion using the bosaris 

toolkit [12]. The final fusion resulted in a 0.4159 minDCF and 

a 7.333% EER in the CNSRC 2022 challenge. The fusion result 

improved 21.72% relatively in minDCF and 33.09% relatively 

in EER compared to our SEResnet-34 model. 
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Table 3 The EER(%) and MinDCF(0.01) results of our subsystems on the CN-Celeb evaluation set and the final result of 

our fusion system 

System Model Pooling 
Model  

Finetune 

Scoring  

Method 
asnorm 

score 

calibration 

CN-Celeb evaluation set 

EER(%) MinDCF(0.01) 

1 
SEResnet-

34 

statistics 

pooling 
no cosine no no 10.96 0.5313 

2 
SEResnet-

34 

multi-

resolution 

[7] 

no PLDA no no 10.28 0.5195 

3 
SEResnet-

34 

hybrid 

statistics 

pooling 

no cosine no no 10.08 0.5115 

4 ResNeSt-34 
statistics 

pooling 
no cosine no no 10.15 0.5219 

5 ResNeSt-34 
statistics 

pooling 
no PLDA no no 10.09 0.5331 

6 
ECAPA-

TDNN [3] 

Attentive 

Stat 

Pooling 

no cosine no no 12.65 0.6010 

7 
TDNN-Xi-

Vector [8] 

Xi-Vector 

pooling 
no cosine no no 12.84 0.6266 

8 
RESNET-

34 [2, 18] 

statistics 

pooling 
no cosine no no 13.03 0.6170 

9 
i-vector 

[13, 19] 
- no PLDA no no 13.87 0.6307 

10 
x-vector [1, 

13] 

statistics 

pooling 
no PLDA no no 12.19 0.5957 

11 ResNeSt-50 
statistics 

pooling 
yes 

attention 

back-end  
no no 9.541 0.5044 

12 ResNeSt-50 
statistics 

pooling 
yes 

attention 

back-end  
yes no 9.456 0.5026 

13 ResNeSt-50 
statistics 

pooling 
yes 

attention 

back-end  
yes yes, (C=0.21) 9.389 0.5014 

14 ResNeSt-50 
statistics 

pooling 
no cosine yes yes, (C=1.2) 9.518 0.4979 

15 ResNeSt-50 

multi-

head [6] 

pooling 

no cosine no no 10.48 0.5283 

16 ResNeSt-50 

multi-

head 

pooling 

no PLDA no no 9.969 0.5232 

17 ResNeSt-50 

Attentive 

Stat 

Pooling 

no cosine no no 9.941 0.5239 

18 ResNeSt-50 

Attentive 

Stat 

Pooling 

no PLDA no no 9.716 0.5051 

19 ResNeSt-50 

hybrid 

statistics 

pooling 

no PLDA no no 9.541 0.4742 

20 TDNN [1] 
statistics 

pooling 
no cosine no no 15.83 0.7276 

21 ResNet34L 
statistics 

pooling 
no cosine no no 11.87 0.5952 

22 ResNet34 

Attentive 

Stat 

Pooling 

no cosine no no 10.62 0.5494 

23 
ECAPA-

TDNN 

Attentive 

Stat 

Pooling 

no cosine no no 11.41 0.5977 

fusion 1~23 - - - - - 7.333 0.4159 

 


