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• ECAPA-TDNN
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Figure 2: The whole architecture of our proposed system.

• Overview
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Figure 3: The multi-scale convolution structures with three different scales of kernels, 

where k, s, p denotes kernel size, stride and padding respectively.

• Multi-scale Convolution Layers

Proposed Models



Figure 4: The residual block of the SE-Res2block.

• Residual Blocks in SE-Res2blocks

Proposed Models
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Figure 5: The combination of attentive statistic pooling and SPoC pooling, where the last 

convolution layer denotes the 1-D CNN after concatenation of multiple SE-Res2blocks.

• Combination of Multiple Poolings

Proposed Models



• SPoC(sum poolings of convolutions)
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Experiments
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Experiments

• Acoustic Feature

• 3 seconds of fixed-length chunks

• Input features: 80-dimensional mel-filterbanks 

• No voice activity detection (VAD) is applied during training. 

• Data augmentation recipes include: 

➢ Specaugment 

➢ Speed perturbation with rates of 0.95  and 1.05

➢ Adding noise and reverberation in Room Impulse Response and Noise 

Database (RIRs)  with the signal-noise ratio (SNR) ranges from 0 to 15 

• Training Settings

• Speechbrain platform with PyTorch framework

• Speaker embeddings : 192-D vectors

• First 20 epochs: the Adam optimizer is used with a learning rate of  on the CN-

Celeb1 dataset, except the CN-Celeb1 evaluation set

• Following 20 epochs: Fine-tuning method of adjusting the learning rate to  on

both CN-Celeb1, CN-Celeb2 and Aishell

• The margin and the scale parameters of the Additive Angular Margin (AAM) Loss  

are set to  0.2 and  30 



Results

• Comparision with the baseline system and ablation study



Results

• Qualitative analysis

Figure 5: Visualization of the speaker embeddings in different systems. (a) represents the 

baseline system and (b) represents the proposed system.
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Conclusions

Three steps we take in our system:

• Multi-scale convolution layers are applied to substitute the single-scale 

TDNN layer.

• The residual layers in SE-Res2blocks can better solve the degenerate 

problems in deep networks. 

• Concatenating the SPoC and statistic attentive pooling can provide more 

spatial information than single-scale pooling. 

• All steps of our enhancements achieve better performances comparing to the 

ECAPA-TDNN baseline system. 
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