The SJTU X-LANCE Lab System for CNSRC 2022

X-LANCE Lab, Shanghai Jiao Tong University

Zhengyang Chen, Bei Liu, Bing Han, Leying Zhang, Yanmin Qian

Speaker Verification Task

- ▶ 0.2975 minDCF, 4.911 EER
- Speaker Retrieval Task
 - ▶ 0.4626 mAP

Data Usage

	Duration(s)	CN-Celeb1		CN-Celeb2	
Training Dataget	Durution(c)	# of Utters	Proportion	# of Utters	Proportion
F Training Dataset	<2	41,658	32.02%	36,505	6.89%
CN Calab 2 (1006 an aslams)	2-5	38,629	29.69%	57,215	10.81%
• CN-Celeb2 (1996 speakers)	5-10	23,497	18.06%	266,799	50.39%
CNIC(1,1,1,1) (707 1)	10-15	10,687	8.21%	154,120	29.11%
• CN-Celeb1 dev (797 speakers)	>15	15,638	12.02%	14,846	2.80%

• Combine the short utterances from the same speaker and genre to make each utterance longer than 5s

Dataset	Speaker Num	Utterance Num	
CN-Celeb2	1996	524787	0
CN-Celeb1 dev	797	126532	5
CN-Celeb2 Comb	1996	455603	
CN-Celeb1 dev Comb	797	52693	

Training Dataset

- CN-Celeb2 (1996 speakers)
- CN-Celeb1 dev (797 speakers)
- Combine the short utterances from the same speaker and genre to make each utterance longer than 5s
- Data Augmentation
 - Additive noise from MUSAN
 - Reverberation from RIR
 - Speed perturbation: speed up or slow down an utterance with ratio 1.1 and 0.9 (consider as a new speaker)

Training Dataset

- CN-Celeb2 (1996 speakers)
- CN-Celeb1 dev (797 speakers)
- Combine the short utterances from the same speaker and genre to make each utterance longer than 5s
- Data Augmentation
 - Additive noise from MUSAN
 - Reverberation from RIR
 - Speed perturbation: speed up or slow down an utterance with ratio 1.1 and 0.9 (consider as a new speaker)
- Feature Extraction
 - 80-dimensinal Fbank
 - No VAD is applied

System Architecture

Speaker Embedding Extractor

- TDNN based (x-vector, E-TDNN, ECAPA-TDNN)
- ResNet based (r-vector, Thin-resnet)
- Transformer based (s-vector)
- Embedding extractor from raw wav (RawNet, SincNet)

Complex and large models always have serious overfitting problem!

The simple r-vector doesn't seem to have this problem.

Snyder, David, et al. "X-vectors: Robust dnn embeddings for speaker recognition."

Snyder, David, et al. "Speaker recognition for multi-speaker conversations using x-vectors."

Desplanques, Brecht, et al. "Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification."

Hossein Zeinali, et al, "But system description to voxceleb speaker recognition challenge 2019"

Nagrani, Arsha, et al. "Voxceleb: Large-scale speaker verification in the wild." .

Katta, Sandesh V., et al. "S-vectors: Speaker embeddings based on transformer's encoder for text-independent speaker verification."

Jung, Jee-weon, et al. "Rawnet: Advanced end-to-end deep neural network using raw waveforms for text-independent speaker verification." Ravanelli, Mirco, et al. "Speaker recognition from raw waveform with sincnet."

r-vector

Resnet34

max pool, stride 2

			_
Layer name	Structure	Output	34-layer
Input	_	$80 \times \text{Frame Num} \times 1$	
Conv2D-1	3×3 , Stride 1	$80 \times \text{Frame Num} \times 32$	1×1 , 64, stride 2
			- 3×3 max pool, stride 2
ResNetBlock-1	$\begin{vmatrix} 3 \times 3, 32 \\ 3 \times 3, 32 \end{vmatrix} \times 3$, Stride 1	$80 \times \text{Frame Num} \times 32$	
ResNetBlock-2	$\begin{bmatrix} 3 \times 3, 64 \\ 2 \times 2, 64 \end{bmatrix} \times 4$, Stride 2	40 imes Frame Num / / 2 imes 64	$\begin{vmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{vmatrix} \times 3$
	$[3 \times 3, 04]$, ,	
ResNetBlock-3	$\begin{vmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{vmatrix} \times 6$, Stride 2	20 imes Frame Num $//4 imes 128$	
	$3 \times 3,256$		$\left[3 \times 3, 128 \right]_{\checkmark 4}$
ResNetBlock-4	$\begin{bmatrix} 3 \times 3, 256 \end{bmatrix} \times 3$, Stride 2	$10 \times \text{Frame Num} / / 8 \times 256$	$\left[\begin{array}{c} 3 \times 3, 128 \end{array} \right]^{+1}$
StatsPooling	_	20 imes 256	-
Flatten	_	5120	[3×3.256]
Emb Layer	_	256	3×3,256 ×6
			$ 3 \times 3, 512 _{\times 3}$
			3×3, 512

Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matejka, and Old ~ rich Plchot, "But system description to voxceleb speaker recognition challenge 2019," arXiv preprint arXiv:1910.12592, 2019.

CNSRC 2022

Make r-vector deeper

			_
Layer name	Structure	Output	
Input	_	$80 \times$ Frame Num $\times 1$	relu
Conv2D-1	3×3 , Stride 1	80 imes Frame Num $ imes 32$	2v2.64
ResNetBlock-1	$\begin{bmatrix} 1 \times 1, 32 \\ 3 \times 3, 32 \\ 1 \times 1, 128 \end{bmatrix} \times N_1, \text{Str}$	ide 1 $80 \times$ Frame Num $\times 128$	
ResNetBlock-2	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times N_2, \text{Str}$	ide 2 $40 \times \text{Frame Num}//2 \times 256$	
ResNetBlock-3	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times N_3, \text{ Str}$	ide 2 $20 \times$ Frame Num $//4 \times 512$	256-d
ResNetBlock-4	$\begin{bmatrix} 1 \times 1,256\\ 3 \times 3,256\\ 1 \times 1,1024 \end{bmatrix} \times N_4, \text{ St}$	ride 2 $10 \times$ Frame Num $//8 \times 1024$	$\begin{array}{c} 1 \\ \hline \\$
StatisticPooling		20 imes 1024	
Flatten	_	20480	(†) -
Emb Layer	_	256	↓relu

Deep ResNet Name	(N_1,N_2,N_3,N_4)
ResNet152	(3, 8, 36, 3)
ResNet221	(6, 16, 48, 3)
ResNet293	(10, 20, 64, 3)

64-d

Stage I

- Loss: Additive angular margin (AAM) loss
 - Margin: 0.2
 - Classification number: 8379 (2793 * 3)
- Training Segment: 2s
- Optimizer: SGD

Stage II: Large Margin Finetune

- Loss: Additive angular margin (AAM) loss
 - Margin: 0.5
 - Classification number: 2793 (no speed perturb aug)
- Training Segment: 6s
- Optimizer: SGD

$$L_{3} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_{i}}+m))}}{e^{s(\cos(\theta_{y_{i}}+m))} + \sum_{j=1, j \neq y_{i}}^{n} e^{s\cos\theta_{j}}}$$

Scoring Method

• Cosine + Asnorm (imposter cohort size 600)

Methods to leverage multiple enrollment utterances

- Utt-Concat: concatenate the utterances belonging to the same speaker to one long utterance
- Emb-Avg: Average the embeddings of the enrollment utterances from the same speaker to one embedding
- Score-Avg: Average the score between one test utterance and multiple enrollment utterances from the same speaker

Ablation study on different ways to leverage multiple enrollment utterances

Scoring Method	Enroll Comb	minDCF (0.01)	EER (%)
Cosine	Utt-Concat	0.4391	7.305
Cosine	Emb-Avg	0.4004	6.922
Cosine + ASnorm	Utt-Concat	0.4035	7.085
Cosine + ASnorm	Emb-Avg	0.3707	6.590
Cosine + ASnorm	Score-Avg	0.4419	6.759

Note: results based one resnet34 after stage I training

- Asnorm benefit the system a lot
- Emb-Avg strategy achieves the best result

Model	Aug	minDCF (0.01)	EER
Resnet34	No Perturb	0.3958	7.981
Resnet34	With Perturb	0.3707	6.590

Note: results based on resnet34 after stage I training

• Speed perturbation is very necessary to improve the system performance

Experiments

Results for all the systems

System	Params #	minDCF (0.01)	EER (%)	FNR (%)	FPR (%)
ResNet34 *	6.63M	0.3958	7.981	35.29	0.043
ResNet34	6.63M	0.3707	6.590	31.73	0.054
ResNet152	19.8M	0.3386	5.762	29.34	0.045
ResNet221	23.8M	0.3270	5.543	28.08	0.046
ResNet293	28.6M	0.3202	5.553	27.92	0.041
DF-ResNet	14.8M	0.3361	6.279	28.83	0.048
ResNet34 + LM	6.63M	0.3543	6.221	30.06	0.054
ResNet152 + LM	19.8M	0.3251	5.452	28.66	0.039
ResNet221 + LM	23.8M	0.3179	5.284	28.27	0.035
ResNet293 + LM	28.6M	0.3164	5.227	27.82	0.038
DF-ResNet + LM	14.8M	0.3185	6.117	27.46	0.044
Fusion	-	0.2975	4.911	25.28	0.045

ResNet*: training without speed perturbation augmentation

FNR: false negative rate when we achieved the minDCF

FPR: false positive rate when we achieved the minDCF

LM: large margin finetuning

Bei Liu, Zhengyang Chen, Shuai Wang, Haoyu Wang, Bing Han, Yanmin Qian. DF-ResNet: Boosting Speaker Verification Performance with Depth-First Design10.21437/Interspeech.2020-2650. Accepted by InterSpeech 2022

Zhengyang Chen

CNSRC 2022

SJTU X-LANCE Lab 13 / 17

TDNN based network

Model	Param#	minDCF (0.01)	EER
ECAPA-TDNN (C=512)	6.2M	0.4248	8.44
ECAPA-TDNN (C=1024)	14.7M	0.4343	8.345
ResNet34	6.63M	0.3543	6.221

Note: results after stage II training

- The ECAPA-TDNN doesn't perform well in this setup
- The ECAPA-TDNN seems to be overfitting

Desplanques, B., Thienpondt, J., Demuynck, K. (2020) ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification. Proc. Interspeech 2020, 3830-3834, DOI: 10.21437/Interspeech.2020-2650.

Zhengyang Chen

CNSRC 2022

SJTU X-LANCE Lab 14 / 17

- Leverage the genre information?
 - Adversarial training to remove the genre information
 - Add a gradient reversal layer before genre classification
 - No further improvement
 - Failed
 - Add the genre information in score calibration
 - Train acc: 0.9741 Valid acc: 71.75 (ECAPA-TDNN)
 - The EER and minDCF metric are not consistent (Especially under the CNSRC setup)
 - Score calibration objective is more related with EER
 - EER improved, minDCF degraded
 - Failed

$$l(s) = w_s s + \mathbf{w}_q^T \mathbf{q} + b$$

Directly submit the score of ResNet221

Zhengyang Chen

Bei Liu

Bing Han

Leying Zhang

Yanmin Qian

Thanks to our teams !

Zhengyang Chen

CNSRC 2022

SJTU X-LANCE Lab 17 / 17