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Abstract
This report describes our submission to the speaker verification
(fixed track and open track) of the CN-Celeb Speaker Recog-
nition Challenge 2022 (CNSRC 2022). Both tracks share the
same speaker verification system, which only uses CN-Celeb.T
as our training set. In this challenge, our sub-systems con-
sist of three styles of models, ResNet-based, TDNN-based, and
Transformer-based. We also applied a series of approaches in-
cluding data augmentation, attention module, loss function, and
attention-based back-end for multiple enrollment utterances to
enhance the corresponding sub-systems. Our final system is a
fusion of 5 sub-systems and performed well on both tracks of
CNSRC 2022. The minDCF of our submission is 0.3399, and
the corresponding EER is 5.728%. In addition, observations
on the gain of each method and the performance of one system
under different genres were given.

1. Data
1.1. Datasets

The development of CN-Celeb1 dataset[1] contains 797 speak-
ers with a total of 107,953 utterances and the CN-Celeb2
dataset[2] contains 1996 speakers with a total of 524,787 utter-
ances. [2] showed there are a large amount short-time utterances
that are considered hard samples in both datasets. After audi-
tioning these samples, we found the size of the shortest ones is
26K, with a duration of less than 1 second, which means they
are weakly discriminative or even noise samples. Therefore,
we argued that these samples are not conducive to model train-
ing and filtered them (2459 utterances in total). Finally, 2793
speakers and 630,281 utterances were used for model training.

2. Models
2.1. Data Augmentation and Features Extraction

2.1.1. Data Augmentation

Data augmentation contains offline mode and online mode.
For the offline mode, we used a 3-fold speed augmenta-

tion [3] to generate extra twice speakers. Each utterance in this
dataset was perturbed by 0.9 or 1.1 factor based on the SoX
speed function. As a result, we obtained 8,379 speakers and
1,890,843 training speech utterances.

For the online mode, we adopted a strategy similar to that
in [3] to construct an augmentation chain as:

• gain augment with a probability of 0.2

• white noise augment with a probability of 0.2

• noise addition augment with a probability of 0.6

• time stretch augment with a probability of 0.2
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Figure 1: GCFA: gated channel-frequency attention module

Notably, we sampled some speech trials randomly by genre
type from the CN-Celeb2 dataset and used them instead of the
MUSAN dataset [4] to mix with the training utterances as noise
addition augmentation. Three to seven recordings are randomly
picked from genre speech, then added to the original signal from
13 to 20dB SNR. We also adopted SpecAugment[5] on log Mel
spectrogram with randomly masking 0 to 10 frequency channels
and 0 to 5 time frames.

2.1.2. Features Extraction

We extracted 80-dimensional log Mel spectrogram based on
touchaudio. The window size is 25 ms, and the frameshift is
10 ms. 400 frames of features were extracted for transformer-
based and TDNN-based sub-systems, and 250 frames of fea-
tures were extracted for ResNet-based sub-systems. No voice
activation detection (VAD) or speech enhancement was used.

2.2. Front-end Backbone

TDNN-based and ResNet-based models are the mainstream
backbones used in speaker recognition with a good trade-off
between computation and performance. Recently, transformer-
based models have emerged in this field and achieved state-of-
the-art performance [6]. Therefore, we adopted all three archi-
tectures simultaneously to construct various sub-systems.

2.2.1. ResNet-based

We constructed a new ResNet model with 40 layers follow-
ing the design of ResNet34[7] and modified it by referring to
[8, 9]. Then, we proposed a gated channel-frequency attention



module(GCFA) to enhance this model. The core design of our
ResNet is as follows:

1. The number of blocks and channels in each stage is
(2,2,12,2) and (64,96,192,384) respectively.

2. Remove the activation function in stem and at the end of
each residual block.

3. Use the convolution with kernel size of 2 and step size of
2 to downsample the feature maps between stages.

Inspired by GCT [10], we proposed GCFA, a new
gated frequency-channel context modeling attention module (as
shown in Figure 1) to get better frequency attention and channel
attention in ResNet. We added it before the residual connection
in each residual block. The calculation steps of it are:

• Gated Frequency Firstly, feature maps X ∈ RF,T,C (C,
F, and T represent the dimension of channels, frequency,
and time) is pooled into a vector sss ∈ R

F containing
frequency information by global average pooling (GAP).
Next, scaled normalization is applied on sss to get ŝss ∈
R

F .

ŝi =
ksi
∥sss∥2

=
ksi√∑F
1 si2 + ϵ

, i ∈ {i, ..., F} (1)

where ϵ is 1e-6. k is a soft scale and is set to
√
F in

experiments.
Then, the trainable gated vectorααα ∈ RF and bias vector
βββ ∈ R

F are calculated with ŝss to get gated frequency
vector fff ∈ RF as follows:

fi = αiŝi + βi, i ∈ {1, ..., F} (2)

• Gated Channel Calculating process of gated channel
vector is similar to that of gated frequency vector except
the receptive field of the attention module is limited to
the channel dimension. The process is as follows:

ĝi =
kgi
∥ggg∥2

=
kgi√∑F
1 gi2 + ϵ

, i ∈ {i, ..., C} (3)

ci = γiĝi + ωi, i ∈ {1, ..., C} (4)

where ggg ∈ RC is result of GAP along channel axis. γ ∈
RC , ω ∈ RC respectively represent the gating vector
and bias vector in the channel dimension, and ccc ∈ RC

represents the channel vector after gating.

• Gated Frequency-Channel Attention The gated fre-
quency vector and the gated channel vector are combined
with sigmoid activation function and broadcasting to
get gated frequency-channel attention which the original
feature maps XF,T,C element-wise multiply.

X̂ = X(sigmoid(fff) + sigmoid(ccc)) (5)

2.2.2. TDNN-based

Time Delay Neural Networks (TDNNs) hav become the main-
stream approach in speaker verification tasks. TDNNs depend
on 1D convolutions to capture global frequency feature, yet
need many filters to model the fine details of any frequency re-
gion [11]. To mitigate this issue, many researchers introduce
2D convolutions before TDNN layers to incorporate frequency
translational invariance. We applied two kinds of state of the art
TDNNs based on 2D convolutions:
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Figure 2: Structure of the CNN-Encoder

• ECAPA CNN-TDNN [11] This work added 2D convo-
lutional stem to model high resolution frequency details
in front of TDNN layers. Our ECAPA CNN-TDNN is
similar to the vanilla, but we applied extra SE module in
2D convolution stem. Its structure is shown in Figure 2,
where encoder is ECAPA-TDNN.

• MFA-ECAPA [12] To address the performance of
TDNNs may degrade under short utterance scenaris, Liu
et al. proposed MFA-ECAPA model with a novel dual-
path design. We reproduced MFA-ECAPA as our an-
other backbone with the kernel size of 3 and stride of 1
in TDNN layer of MFA module.

For all TDNN-based models, the number of channels C in
the convolutional stem is 128, and the number of channels in
the ECAPA-TDNN is 1024. The stride of the first convolutional
layer of ECAPA is 3. The embedding dimension is 192.

2.2.3. Transformer-based

Currently, some researchers have found that combining global
information is beneficial for convolutional models to get better
performance [13, 14]. However, these works either decoupled
the process of global interaction from local interaction[14], or
only utilized simple contextual information[13, 15, 16]. Thus,
we proposed a new architecture, Speaker-ViT, which combines
the global modeling capability of the transformer architecture
with the local modeling capability of the convolution to fully
fuse the local and global modeling processes within and be-
tween tokens by stacking multiple global-local blocks. Its ar-
chitecture is shown in the Figure 3. In the Pre-Norm structure,
we chose batch normalization as Norm operation. LCN is re-
ferred from [8] for local modeling. MHSA is multi-head self-
attention. TokenSE means calculate SE attention between chan-
nels of each token with shared weights, and DWConv is depth-
wise convolution. There is also a positional encoding mecha-
nism to record the positional relationships between tokens and
we add it to features after the first global-local block. Its calcu-
lation process is as follows:

y = ELU(DWConv(x)) (6)

where ELU is exponential linear unit activation function DW-
Conv is depthwise convolution. x is the input features and y is
the positional encoding.
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Figure 3: The overall architecture of Speaker-ViT

The low-level features containing details concatenate with
the high-level semantic features to get comprehensive features
after being reduced in dimension (divided by 2) through a
weight-shared linear layer. The dimension of each token (chan-
nels) and embedding are both 400. The dimension scale in TGL
is 2. The number of heads and dimension of each head are 8 and
64 respectively. Unless mentioned, the kernel size of all convo-
lution is 3 and activation function is GELU in this model.

Inspired by [8], we also replaced the original stem in
Speaker-ViT with 2D convolution layers to obtain more fine-
grained local features in the spectrogram, which shows in Fig-
ure 2 where Encoder is Speaker-ViT without stem, C is 24, the
kernel size of the first convolution is 5, and the stride of the last
convolution is 3.

2.3. Pooling Method

The pooling layer aims to aggregate the variable frame-level
features to a fixed utterance-level embedding. We applied
channel-dependent attentive statistics (CAS) [13] as the pooling
layer for all systems. This method can be described as below:

Suppose obtained frame-level feature h = [h1, h2, ..., hT ],
with ht ∈ Rd. We can gain a channel- and context-dependent
scalar weight through a softmax layer:

αt,c =
exp (vT

c f(Wht + b) + kc)

exp (
∑T

τ vT
c f(Whτ + b) + kc)

(7)

where the parameters W ∈ RR×C , b ∈ RR×1 and vc ∈
RR×1. The score αt,c represents the importance of each frame
given the channel c. Then, calculate the weighted mean and
standard deviation of channel c and concatenate them to get
pooled representation. For all systems, R is 128.

2.4. back-end

Since CN-Celeb.E contains multiple enrollment utterances, an
attention-based back-end can better fuse multiple embeddings
of enrollment than averaging them directly. So we adopted
the attention-based back-end for multiple enrollment utterances
mentioned in [17] to improve the front-end models. We set hy-

perparameters d1 = 8, d2 = 8, D2 = 128, and scale the
dimension of input from D to d1 ∗ Dhead (Dhead = 256) dur-
ing first fusion stage referring to the multi-head self attention
mechanism.

2.5. Loss Function

2.5.1. AdaFace-Softmax

Magin-based loss functions have been widely chosen in speaker
recognition, such as AM-Softmax [18] and AAM-Softmax [19].
Although they increase the inter-class margin and reduce the
intra-class margin, they don’t explicitly consider sample qual-
ity. It is well-known that low-quality unrecognizable samples
have a nontrivial pernicious impact on the models with margin-
based loss, and the CN-Celeb dataset includes more low-quality
samples compared to the VoxCeleb dataset [20]. Therefore, we
adopted the loss function proposed by [21], which considers the
influence of sample quality on the margin. The formulation is
given by (for more details, please refer to [21]):

L = − log
exp (f (θi,yi ,m))

exp (f (θi,yi ,m)) +
∑n

j ̸=yi
exp (s cos θi,j)

(8)

f (θi,j ,m)AdaFace =

{
s cos (θi,j + gangle )− gadd j = yi

s cos θi,j j ̸= yi
(9)

We also introduced subcenter method [22] to alleviate the
effect of noisy and low-quality samples. The formulation is
given by:

cos (θi,j) = max
1≤k≤K

(∥zi∥ · ∥W j,k∥) (10)

This loss function was used for the transformer-based
and TDNN-based architecture to train the corresponding sub-
systems. s, m, h as the hyperparameters is 32, 0.2, 0.333 and
the number of subcenters is 2 in experiments.



Table 1: Ablation Study on Speaker-ViT with 2793 speakers. + here denotes stacking our methods.

Methods CN-Celeb.E(TTA) CN-Celeb.E(Full)
EER(%) minDCF EER(%) minDCF

Speaker-ViT 8.178 0.4629 8.077 0.4471
+ genres noise 7.823 0.4505 7.756 0.4401
++ Subcenter-AdaFace 9.012 0.4318 8.955 0.4193
+++ back-end 7.282 0.4240 7.215 0.4136
+++ CNN-Encoder 8.679 0.4228 8.522 0.4161
++++ back-end 7.102 0.4186 7.091 0.4112

2.5.2. Data Uncertainty Learning Loss

We utilized the data uncertainty learning loss (DUL loss) pro-
posed by [23] to alleviate the negative impact of complex sce-
narios on speaker embeddings. Specifically, two linear heads
are defined after the aggregation layer to output speaker embed-
ding µi and uncertainty information δi(scene, noise, semantics).
Reparameterization trick was used to keep gradients as usual.
Specifically, we first sampled a random noise ϵ from a normal
distribution, which is independent of the model parameters, and
then generated eithe equivalent sampling representation.

ei = µi + ϵδi, ϵ ∈ N(0, I) (11)

To prevent δI degenerating to constant vector in the learn-
ing process, KL divergence was used as the regularization term
to explicitly constrain δi. The definition of DUL loss function
is shown as follows:

LDUL = Lclass(ei) + λKL(N(zi|µi, δ
2
i )||N(ϵ|0, I)) (12)

λ is a hyperparameter and it is 1e-4 in experiments.

2.6. Training Protocol

We trained front-end embedding models and back-end models
in turn.

In the front-end training stage, we used the SGD opti-
mizer with a momentum of 0.9 and weight decay of 1e-4 for
transformer-based models (2e-5 for TDNN-based models), and
we used the RangerLars optimizer[24, 25] with a weight decay
of 2e-5 for ResNet-based models. The initial learning rate is 4e-
2 for transformer-based models, 3e-2 for TDNN-based models
and 1e-2 for ResNet-based models. We adopted a cosine sched-
uler which steps at each iteration to decay the learning rate ex-
cept the first epoch for warm-up. Batch size is 256 for 2793
speakers and 512 for 8379 speakers. We applied batch augmen-
tation, similar to that of [26] and M is 4. The training stopped
after 20 epochs for transformer-based models, 12 epochs for
TDNN-based models, and 15 epochs for ResNet-based models.

In the back-end training stage, we only used 2793 speakers
without noise addition augmentation to train our sub-systems.
Differing from [17], we didn’t freeze the weights of the front-
end but finetuned them together with the back-end. A smaller
finetuning learning rate of 8e-5 for the front-end and a larger
learning rate of 2e-2 for the back-end was adopted. And we
changed the frame size from 400(250) to 600 to fit long ut-
terances. Batch size is 512 consisting of 4 random utterances
sampled from each speaker (128 speakers in a batch). We only
applied GE2E loss [27] for training. In addition, the learning
rate scheduler is the same as in the first stage. The training pro-
cess stopped after 12K iterations.

All the experiments were completed with Pytorch.

Table 2: Ablation Study on ResNet-Att with 2793 speakers. +
here denotes stacking our methods.

Methods CN-Celeb.E(TTA) CN-Celeb.E(Full)
EER(%) minDCF EER(%) minDCF

ResNet 7.789 0.4389 7.474 0.4300
+ GCFA 7.592 0.4238 7.535 0.4185
++ DUL loss 7.429 0.4206 7.311 0.4181

3. Results
3.1. ablation study

Firstly, we used the original Speaker-ViT backbone trained with
2793 speakers followed by AAM-Softmax (m = 0.25, s = 32)
without multi-genres noise addition augmentation as the first
baseline system. Then we studied the effectiveness of each
method by stacking them gradually. Secondly, we also trained
the improved ResNet model followed by AAM-Softmax (m =
0.25, s = 32) with the same datasets as the second baseline to
study the effectiveness of GCFA module and DUL loss.

The performance was evaluated using the equal error rate
(EER) and the minimum normalized decision cost function
(minDCF) calculated where CFA = 1, CMiss = 1, and
Ptarget = 0.01. Our systems included two test modes, ex-
tracting the whole utterances (denoted as Full) and TTA [20].
Once we tested the systems without back-ends, we directly av-
eraged the multiple embeddings extracted from target speakers’
enrollment to obtain their global embedding.

Table 1 shows the improvement of the Speaker-ViT baseline
system by gradually stacking our proposed methods. First, the
overall metrics are better after introducing multi-genres noise
addition augmentation, especially under the TTA, with a 4.3%
gain for EER and 2.7% gain for minDCF. Then, subcenter
AdaFace-Softmax replacing AMM-Softmax also gets signifi-
cant improvement. Although EER deteriorated remarkably on
both test modes, minDCF achieved more than 4%. We argued
that the subcenter enables the model to be more discriminant
for positive samples, which may cause a slight increase in false
reject rate (FR) and a significant decrease in false accept rate
(FA). But EER is more sensitive to the change of FR due to
the imbalance between positive and negative trials in the test
set, thus causing the illusion of weak performance. Based on
the settings above, we added the attention back-end after the
front-end encoder and fine-tuned them together to get a supe-
rior system with EER increasing by around 20%. In addition,
we combined the CNN-Encoder architecture mentioned in 2.2.3
with Speaker-ViT with channels of 480, and it is clear from
the results that this architectural transformation is beneficial for
generalization. However, we found slight overfitting in training,
which indicated it could perform better with larger datasets.



Table 3: Performance of Sub-Systems and Fusion System.

Sub-Systems CN-Celeb.E(TTA) CN-Celeb.E(Full)
EER(%) minDCF EER(%) minDCF

Speaker-ViT 9.012 0.4318 8.955 0.4193
S1: Speaker-ViT + back-end 7.282 0.4240 7.215 0.4136
ResNet-Att 7.502 0.4234 7.232 0.4174
S2: ResNet-Att + back-end 7.187 0.4039 7.170 0.4023
CNN-ECAPA-TDNN 8.037 0.4137 7.829 0.4076
S3: CNN-ECAPA-TDNN + back-end 6.928 0.4048 7.006 0.4007
MFA-ECAPA 8.237 0.4162 8.127 0.4062
S4: MFA-ECAPA + back-end 6.860 0.3974 6.905 0.3932
CNN-Speaker-ViT 7.851 0.3957 7.885 0.3922
S5: CNN-Speaker-ViT + back-end 6.888 0.3832 6.911 0.3771

Fusion System EER(%) minDCF
S1 ∼ S5 (submited) 5.728 0.3399

Table 4: Performance under Cross-Genre and Same-Genre Conditions.
Advertisement Drama Entertainment Interview Live Broadcast Movie play Recitation Singing Speech Vlog

Cross 0.6902 0.9065 0.5339 0.7520 0.5745 0.9286 - - 0.9055 0.4797 0.9560
Same 0.3333 0.2714 0.3815 0.2707 0.2223 0.5690 0.0800 - - 0.1167 0.3523
Total 0.6762 0.3354 0.4112 0.3092 0.2389 0.5553 0.5336 0.1811 0.9055 0.1374 0.3428

Table 2 shows the improvement of the ResNet baseline sys-
tem by gradually stacking a series of approaches. First, most of
metrics have improved with GCFA module, especially under the
TTA, with a 2.55% gain for EER and 3.44% gian for minDCF.
Last, by replacing AAM-Softmax loss with DUL loss, the per-
formance of all metrics has been improved.

3.2. Sub-Systems and Fusion Performance

All our sub-systems trained with 8379 speakers except S1 and
fusion performance were described in Table 3. We found that
applying a CNN stem before capturing global frequency feature
module, such as Speaker-ViT, and ECAPA-TDNN seemed to
obtain a better result. At the same time, we also found that most
of systems with full-length utterance inputs can gain a better re-
sult compared to systems under TTA. Nearly half of the test ut-
terances of test trials are less than four seconds long, which may
be the cause of TTA’s poor performance. For all sub-systems,
introducing back-end brings performance gains, especially for
EER. As our final submission for fixed and open track, we ap-
plied the fusion of these systems (S1∼S5). The results of the
fusion are shown in the last row of Table 3. The final metrics
of our best fusion on the evaluation data are 5.728% EER and
0.3399 minDCF.

3.3. Cross-genres Performance

We split the whole test trials into 22 sub-trials according to the
genre of utterances and whether the genre is included or not
in the enrollment of the target speakers, and then we utilized
the CNN-Speaker-ViT sub-system to extract the embeddings
of full-length utterances to calculate the minDCF for each sub-
trials. The results showed in Table 4 where ”cross” means the
genre of speech is out of enrollment and ”same” is vice versa.
We dropped some sub-trials that were missing or invalid for cal-
culating minDCF. From the results, minDCF on the cross-genre
sub-set is consistently higher than that on the same-genre sub-
set though the difference in each speaker’s enrollment may lead

to some bias in the results. We used samples from every genre
to train our model and even sampled different genres for noise
addition augmentation to capture intrinsic features. However,
characteristics of genres still dominate in the extracted embed-
dings and lead to a seriously negative impact on the recognition
in cross-genre scenarios. In terms of genre, the genres such as
singing, movie, advertising, and playing possess discriminant
characteristics and differ obviously from the other genres, so
improving the performance across these genres is a significant
challenge.

4. Conclusion
In this challenge, first, we modified the ResNet architecture
and proposed a new attention module, GCFA, to build a new
ResNet model. Second, we proposed a new backbone, Speaker-
ViT, based on the transformer to fuse locality and globality.
We also introduced AdaFace, DUL loss, and attention-based
back-end to improve the robustness of the systems. Then, we
ensembled several sub-systems based on three different archi-
tectures, ResNet, TDNN, and transformer, to obtain good re-
sults on speaker verification (fixed track and open track) of CN-
SRC 2022. The final result of our system was 0.3399 minDCF
and 5.728% EER. In addition, observations on the gain of each
method and the performance of one system under different gen-
res were given.
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