

Speaker Verification: Pre-trained model, Attention Augmented, and Contrastive Learning

LI Zhe

Department of Electronic and Information Engineering

Hong Kong Polytechnic University

lizhe.li@connect.polyu.hk

27/06/2022

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Biography

• LI Zhe

- A first-year PhD student, The Hong Kong Polytechnic University
- PhD Supervisor <u>Prof. MAK Man-Wai</u>
- Research Interests: Roubst Speaker Verification & Diarization, Multimodal Speaker Recognition
- □ Homepage: <u>http://lizhe.link</u>
- Contact: <u>lizhe.li@connect.polyu.hk</u>

X-vector

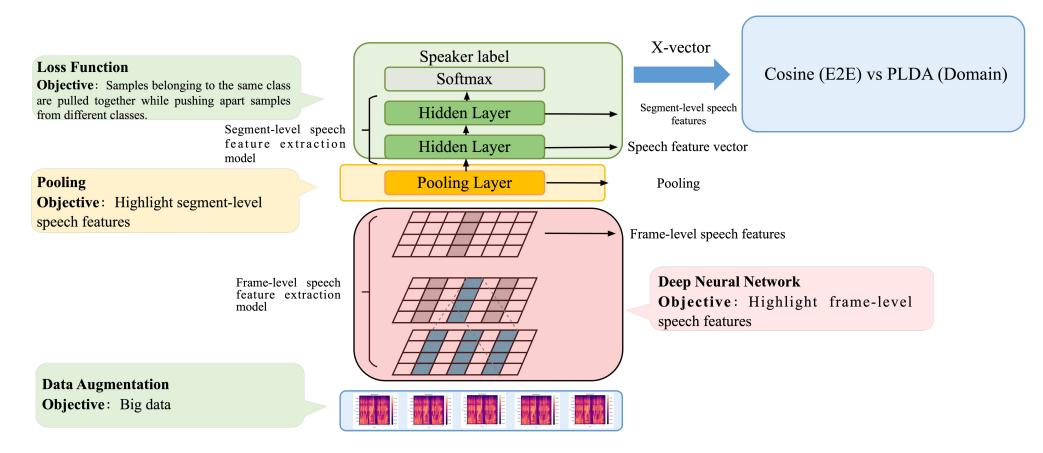


Figure 1. X-vector architecture.

The material in this slide is extracted from the presentation of Prof. HE Liang in The Symposium on Speaker Recognition Reasearch and Application 2021

Pre-Trained model

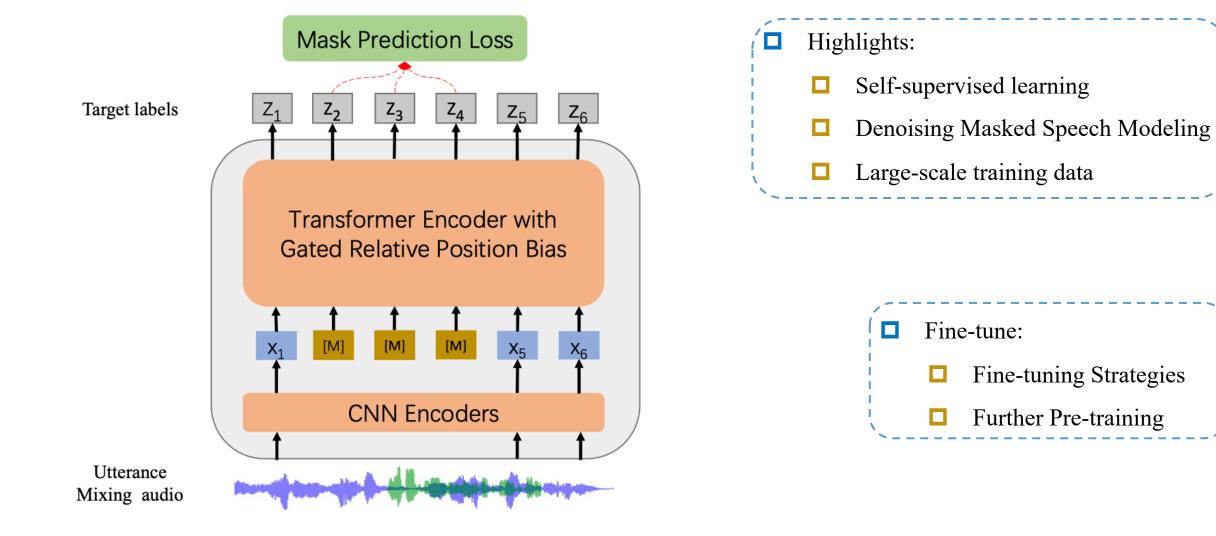


Figure 1. WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing [1].

Experimental Results

Preliminary Results on Voxceleb1

Feature	EER (%)		
	Vox1-O	Vox1-E	Vox1-H
ECAPA-TDNN [2]	1.010	1.240	2.320
HuBERT Base	0.989	0.822	1.678
WavLM Baese+	0.840	0.928	1.758
HuBERT Large *	0.585	0.654	1.342
WavLM Large*	0.383	0.480	0.986

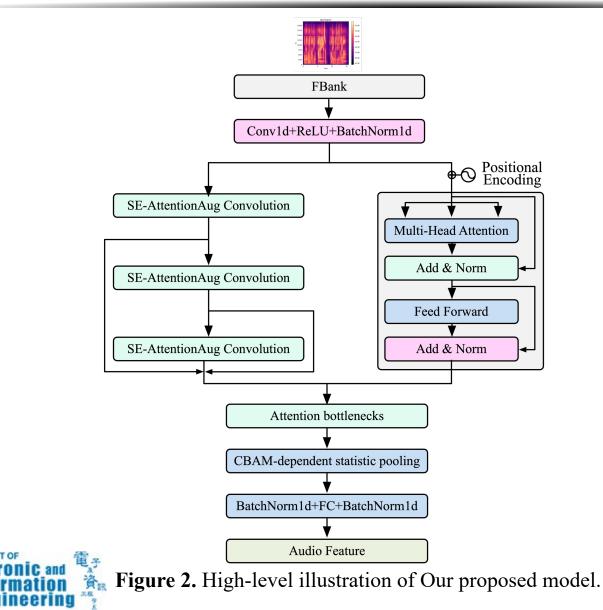
Preliminary Results on CN-Celeb

Feature	EER (%)	minDCF(%)
Fbank + ECAPA-TDNN	8.7920	0.4976
WavLM Large + ECAPA-TDNN	8.3980	0.4762

Sth POLYTECHNIC UNIVERSITY 香港理工大學

Attention Augmented

DEPARTMENT OF



Contributions:

- □ Multi-task and multi-scale feature extraction
- Multi-layer feature aggregation and summation
- **CBAM-**dependent statistics pooling

Attention Augmented

CBAM: Convolutional Block Attention Module

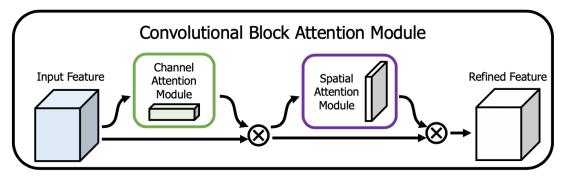


Figure 3. The overview of CBAM. The module has two sequential sub-modules: channel and spatial [3].

Attention Augmented Convolution

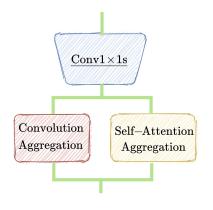


Figure 4. Attention Augmented Convolution [4].

Contrastive learning

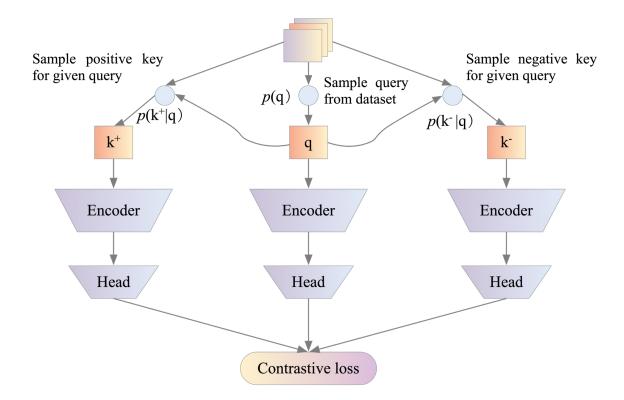
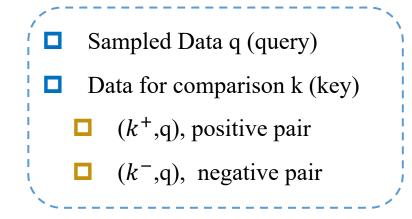


Figure 1. High-level illustration of contrastive learning [5].

■ Objective: Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes [6-9].



THE HONG KONG

C UNIVERSITY

Contrastive learning

DEPARTMENT OF

Electronic and

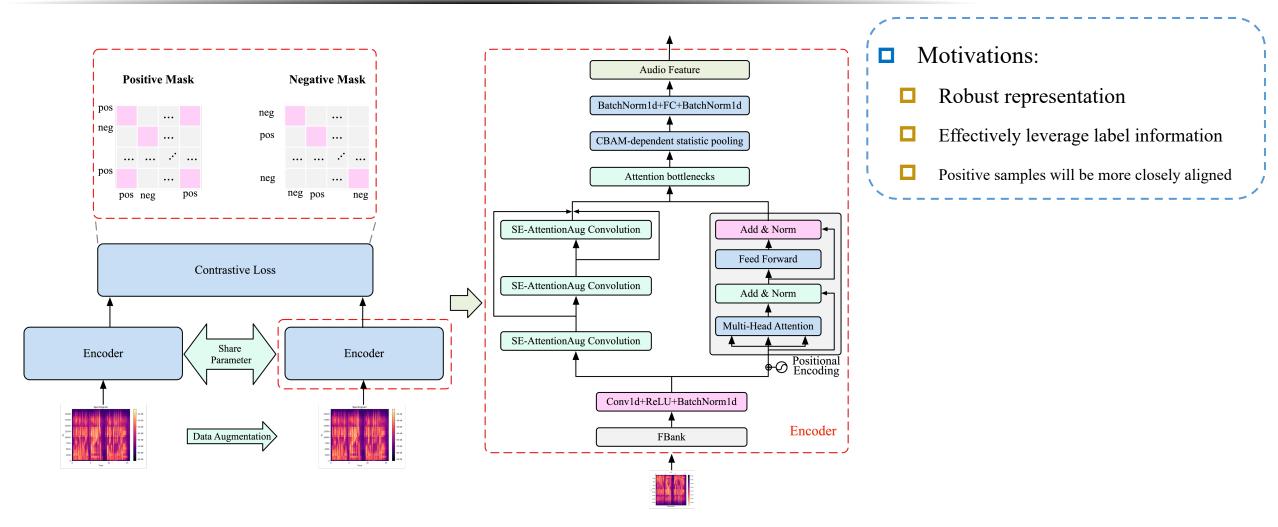


Figure 2. High-level illustration of contrastive learning for speaker verification.

Contrastive Loss

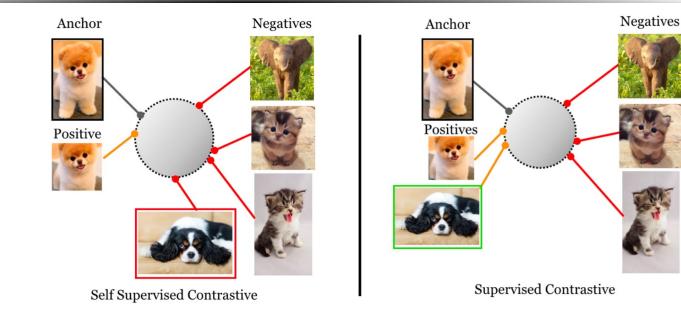


Figure 3. Self-supervised contrastive loss vs supervised contrastive loss Loss [10].

Self-Supervised Contrastive Loss:

$$\mathcal{L}^{self} = \sum_{i \in I} \mathcal{L}_i^{self} = -\sum_{i \in I} \log \frac{\exp\left(\boldsymbol{z}_i \cdot \boldsymbol{z}_{j(i)} / \tau\right)}{\sum_{a \in A(i)} \exp\left(\boldsymbol{z}_i \cdot \boldsymbol{z}_a / \tau\right)}$$

Supervised Contrastive Loss:

DEPARTMENT (

$$\mathcal{L}_{out}^{sup} = \sum_{i \in I} \mathcal{L}_{out,i}^{sup} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p / \tau\right)}{\sum_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)}$$

 \Box z_i is anchor. $z_p, z_{j(i)}$ augmented data, z_a is negative samples, P(i) is the set of positive data, A(i) is the set of negative data.

Summary

Data Cover as much data as possible and use data augmentation strategies.

Model Robust speech features representations from different aspects.

Pooling Highlight segment-level speech features

□ Loss Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes.

Verification Cosine (E2E) vs PLDA (Domain), adversarial domain mismatch, score calibration

References

- [1] Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., ... & Wei, F. (2021). Wavlm: Large-scale self-supervised pre-training for full stack speech processing. arXiv preprint arXiv:2110.13900.
- [2] Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification}}. Proc. Interspeech 2020, 3830-3834.
- [3] Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).
- [4] Pan, X., Ge, C., Lu, R., Song, S., Chen, G., Huang, Z., & Huang, G. (2022). On the integration of self-attention and convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 815-825).
- [5] Le-Khac, P. H., Healy, G., & Smeaton, A. F. (2020). Contrastive representation learning: A framework and review. IEEE Access, 8, 193907-193934.
- [6] Tao, R., Lee, K. A., Das, R. K., Hautamäki, V., & Li, H. (2022, May). Self-supervised speaker recognition with loss-gated learning. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 6142-6146). IEEE.
- [7] Cai, D., Wang, W., & Li, M. (2022). Incorporating Visual Information in Audio Based Self-Supervised Speaker Recognition. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 30, 1422-1435
- [8] Xia, W., Zhang, C., Weng, C., Yu, M., & Yu, D. (2021, June). Self-supervised text-independent speaker verification using prototypical momentum contrastive learning. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 6723-6727). IEEE
- [9] Tang, Y., Wang, J., Qu, X., & Xiao, J. (2021, July). Contrastive learning for improving end-to-end speaker verification. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
- [10] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., ... & Krishnan, D. (2020). Supervised contrastive learning. Advances in Neural Information Processing Systems, 33, 18661-18673.

Try to enjoy your research! Try to do meaningful research forever! You are more than what you have become!

Opening Minds • Shaping the Future • 啟迪思維 • 成就未來