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X-vector

The material in this slide is extracted from the presentation of Prof. HE
Liang in The Symposium on Speaker Recognition Reasearch and
Application 2021

Figure 1. X-vector architecture.
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Pre-Trained model

Figure 1. WavLM: Large-Scale Self-Supervised 
Pre-Training for Full Stack Speech Processing [1]. 

p Highlights:

p Self-supervised learning

p Denoising Masked Speech Modeling 

p Large-scale training data

p Fine-tune:

p Fine-tuning Strategies

p Further Pre-training



Experimental Results
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p Preliminary Results on Voxceleb1
Feature EER (%) 

Vox1-O Vox1-E Vox1-H 
ECAPA-TDNN [2] 1.010 1.240 2.320

HuBERT Base 0.989  0.822 1.678 
WavLM Baese+ 0.840 0.928 1.758 

HuBERT Large * 0.585  0.654  1.342  
WavLM Large* 0.383 0.480 0.986 

p Preliminary Results on CN-Celeb

Feature EER (%) minDCF(%)
Fbank + ECAPA-TDNN 8.7920 0.4976

WavLM Large + ECAPA-TDNN 8.3980 0.4762
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Attention Augmented

Figure 2. High-level illustration of Our proposed model.

p Contributions:

p Multi-task and multi-scale feature extraction

p Multi-layer feature aggregation and summation

p CBAM-dependent statistics pooling
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Attention Augmented
p CBAM: Convolutional Block Attention Module

Figure 3. The overview of CBAM. The module has two sequential sub-modules: channel and spatial [3].

p Attention Augmented Convolution

Figure 4. Attention Augmented Convolution [4].
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Contrastive learning

p Sampled Data q (query)

p Data for comparison k (key)

p (𝑘!,q), positive pair

p (𝑘",q), negative pair
Figure 1. High-level illustration of contrastive learning [5]. 

p Objective: Clusters of points belonging to the same

class are pulled together in embedding space, while

simultaneously pushing apart clusters of samples from

different classes [6-9].
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Contrastive learning

p Motivations:

p Robust representation

p Effectively leverage label information

p Positive samples will be more closely aligned

Figure 2. High-level illustration of contrastive learning for speaker verification.
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Contrastive Loss

p Self-Supervised Contrastive Loss：

p Supervised Contrastive Loss：

Figure 3. Self-supervised contrastive loss vs supervised contrastive loss Loss [10].

p 𝒛𝒊 is anchor. 𝒛𝒑, 𝒛𝒋(𝒊) augmented data,
𝒛𝒂 is negative samples, 𝑷(𝒊) is the set of
positive data, 𝑨(𝒊) is the set of negative data.



Summary
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p Data Cover as much data as possible and use data augmentation strategies.

p Model Robust speech features representations from different aspects.

p Pooling Highlight segment-level speech features

p Loss Clusters of points belonging to the same class are pulled together in embedding space, while

simultaneously pushing apart clusters of samples from different classes.

p Verification Cosine (E2E) vs PLDA (Domain), adversarial domain mismatch, score calibration
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