

CNSRC 2022 Technical Report

Lantian Li, Tao Jiang, Qingyang Hong, Dong Wang

Tsinghua University & Xiamen University & AISHELL

2022.07.27

Odyssey-CNSRC 2022 Workshop 27 June 2022, Beijing, China

OUTLINE

Data, Tasks and Baselines

D Technical Summary

D System Analysis

□ The Next CNSRC

OUTLINE

Data, Tasks and Baselines

D Technical Summary

D System Analysis

□ The Next CNSRC

The Origin of CN-Celeb Datasets

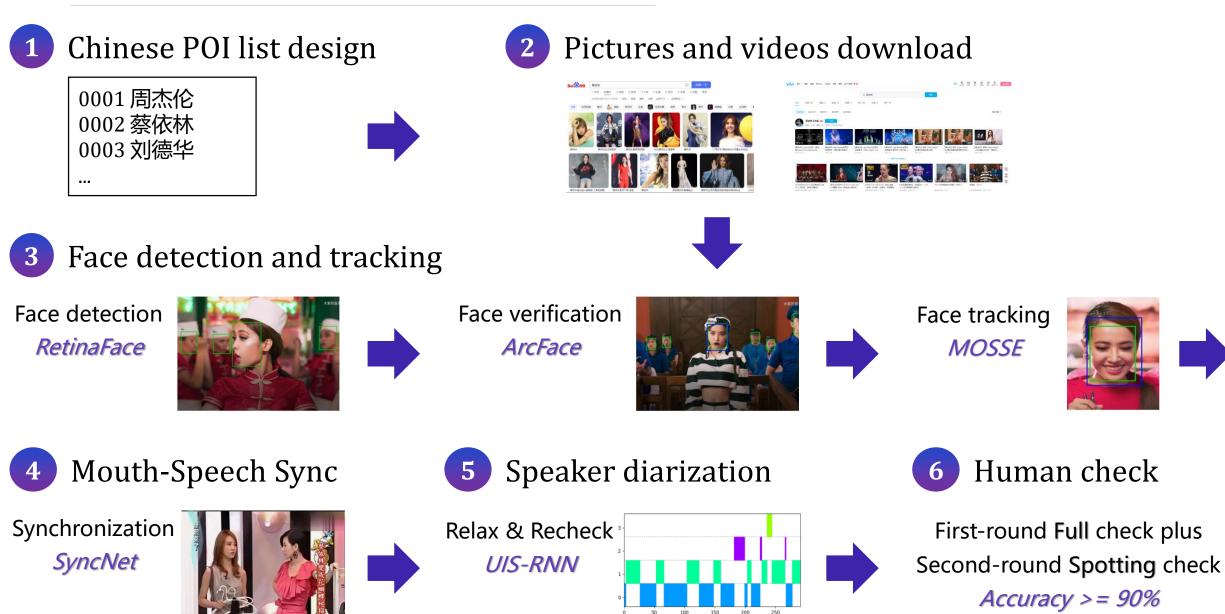
- Modern <u>C</u>hallenge of speaker recognition technique
 - Complex variation: recognizing speakers in the wild.
 - Intrinsic: speaking style (e.g., reading or spontaneous), speaking rate, emotion, and physical status ...
 - Extrinsic: recording device, ambient acoustics, background noise, and transmission channel ...

Multi-genre scenario

- Perhaps the **MOST** challenging scenario for speaker recognition.
 - Multi-genre involves nearly all the complex variations.

• Multi-genre performance determines the practical success of speaker recognition research.

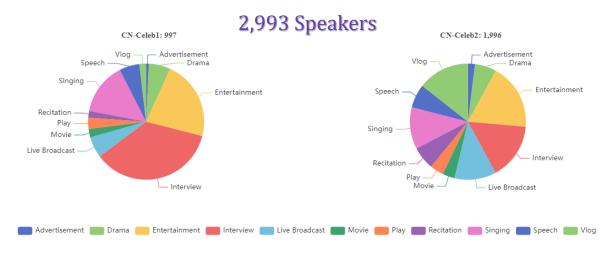
Data Collection Pipeline

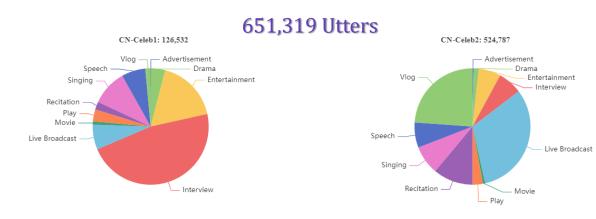


time:0:0:0.00 (0.000 sec 0 frame)

Data Profile

Multi-genre data from multi-media sources





🛑 Advertisement 💼 Drama 🦰 Entertainment 🛑 Interview 🛑 Live Broadcast 🛑 Movie 🛑 Play 💼 Recitation 🛑 Singing 🛑 Speech 📷 Vlog

📕 Advertisement 💼 Drama 📒 Entertainment 🛑 Interview 🛑 Live Broadcast 💼 Movie 🛑 Play 🛑 Recitation 🛑 Singing 🔜 Speech 🚞 Vlog

Task Description – Speaker Verification

Fixed Track

- ONLY CN-Celeb.T is allowed for training/tuning ALL the components of the system.
- This track is designed to compare
 different techniques under the SAME
 data resource.

CN-Celeb.T	CN-Celeb1/dev	# of Speakers # of Utters	797 107,953
	CN-Celeb2	# of Speakers# of Utters	1,996 524,787
	Overall	# of Speakers # of Utters	2,793 632,740

Open Track

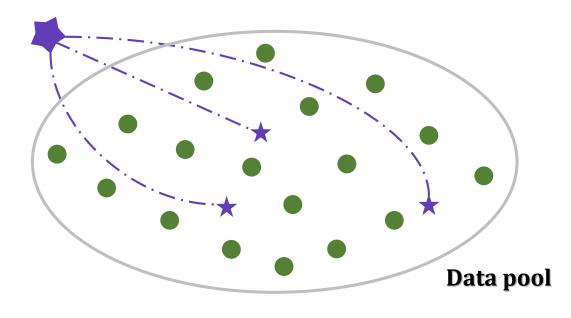
- ANY data sources can be used for developing ALL the components of the system.
- This track is designed to examine the performance Frontier of the present technologies.

CN-Celeb.E	Enroll Data	# of Speakers # of Utters Avg. Duration	196 196 28s
	Test Data	# of Speakers # of Utters Avg. Duration	200 17,777 8s
	Trials	# of Target # of Non-target	17,755 3,466,537

Task Description – Speaker <u>R</u>etrieval

Definition

- SR task is to find out the utterances spoken by a *target* speaker from a large data pool, given an enrollment data of the target speaker.
- The dataset contains **TWO** parts:
 - Target speakers' enrollment data
 - Data pool involves utters of the target speakers * as well as a large amount of non-target utters
- Data profile
 - ANY data sources except CN-Celeb.E are allowed for system building.
 - SR.dev/SR.eval as development/evaluation sets.
 - 5/25 target speakers
 - 50/250 target utterances ★
 - 20,000/500,000 non-target utterances •



Performance measurement

Task 1: Speaker Verification

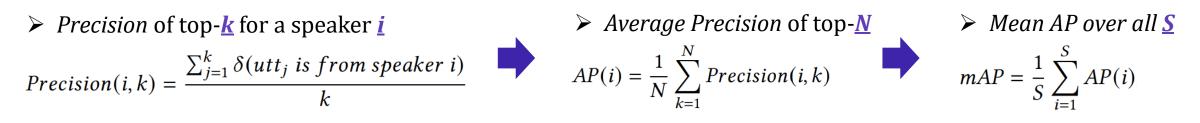
• Primary: Minimum Detection Cost Function (minDCF) 1.0 0.01 1.0 0.99 $C_{Det}(\theta) = C_{Miss} \times P_{Target} \times P_{Miss}(\theta) + C_{FalseAlarm} \times (1 - P_{Target}) \times P_{FalseAlarm}(\theta)$

 $minDCF = \arg\min_{\theta} \left\{ 0.01 \times P_{Miss}(\theta) + 0.99 \times P_{FalseAlarm}(\theta) \right\}$

• Secondary: Equal Error Rate (EER)

 $P_{Miss}(\theta^*) = P_{FalseAlarm}(\theta^*)$

- **Task 2: Speaker Retrieval**
 - Mean Average Precision (*mAP*)



Baselines – ASV-Subtools for Seniors

A + - 🥵

ABOUT ASV-Subtools

https://github.com/Snowdar/asv-subtools

∎)a%	36. D
3.5	£62
ASV-S	ubtools
×щ	311
ាមផ្ទ	1.14

ASV-Subtools: An Open Source Tools for Speaker Recognition

ASV-Subtools is developed based on Pytorch and Kaldi for the task of speaker recognition, language identification,

The 'sub' of 'subtools' means that there are many modular tools and the parts constitute the whole.

Copyright: XMU Speech Lab (Xiamen University, China) Apache 2.0

Author : Miao Zhao (Email: snowdar@stu.xmu.edu.cn), Jianfeng Zhou, Zheng Li, Hao Lu, Fuchuan Tong, Tao Jiang Current Maintainer: Fuchuan Tong (Email: 1017549629@qq.com) Co-author: Lin Li, Qingyang Hong

Citation:

Ç

@inproceedings{tong2021asv,

title={{ASV-Subtools}: {Open} Source Toolkit for Automatic Speaker Verification}, author={Tong, Fuchuan and Zhao, Miao and Zhou, Jianfeng and Lu, Hao and Li, Zheng and Li, Lin and Hong, Qin booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASS pages={6184--6188}, year={2021},

organization={IEEE}

Search o	r jump to 🕧 Pull requ	ests Issues Marketplace Explore		
🛛 Snowdar /	asv-subtools Public			⊗ Watch 17 + ¥ Fork
<> Code ⊙ I:	ssues 🔹 🏦 Pull requests 🖓 Discus	sions 💿 Actions 🖽 Projects 🖽 Wiki	③ Security	
	P master - P 1 branch 🛇 0 tag	5	Go to file Add file * Code -	About
	Sssyousen Update README.md (#40) -	019+7+2 on 30 Jan 🗿 193 commits	An Open Source Tools for S Recognition
	Conf	update recipe	2 years ago	C Readme
	doc doc	open-source-readme	2 years ago	✿ Apache-2.0 License ☆ 360 stars
	🖿 kaldi	fix	2 years ago	 17 watching
	🖿 linux	update voi/SRC	2 years ago	♀ 110 forks
	pytorch	fix bug (#38)	3 months ago	
	recipe	Add files via upload	3 months ago	Releases
	score score	fix plda scoring	9 months ago	No releases published
	.gitignore	fix bug	2 years ago	
	D LICENSE	Initial commit	2 years ago	Packages
	README.md	Update README.md (#40)	3 months ago	No packages published
	addPrefixForUttID.sh	fix	2 years ago	
	-			Contributors 5

Prepared Baselines

- Data processing
 - Data/Spec Augment
 - VAD \geq
- Feature selection
 - \succ Fbanks (80)
- Backbone
 - ResNet34SE
- Backend
 - Cosine similarity

Neural Backbone

Layer	Module	Output	
Input Conv2D	$3 \times 3 \times 32$, Stride 1	$\begin{array}{c} F \times T \times 1 \\ F \times T \times 32 \end{array}$	
ResNet Block-1	$\begin{bmatrix} 3 \times 3 \times 32 \\ 3 \times 3 \times 32 \\ SE \text{ Layer} \end{bmatrix} \times 3, \text{ Stride 1}$	F×T×32	
ResNet Block-2	$\begin{bmatrix} 3 \times 3 \times 64 \\ 3 \times 3 \times 64 \\ \text{SE Layer} \end{bmatrix} \times 4, \text{ Stride 2}$	$\left[\frac{F}{2}\right] \times \left[\frac{T}{2}\right] \times 64$	
ResNet Block-3	$\begin{bmatrix} 3 \times 3 \times 128\\ 3 \times 3 \times 128\\ \text{SE Layer} \end{bmatrix} \times 6, \text{ Stride } 2$	$\left[\frac{F}{4}\right] \times \left[\frac{T}{4}\right] \times 128$	
ResNet Block-4	$\begin{bmatrix} 3 \times 3 \times 256\\ 3 \times 3 \times 256\\ \text{SE Layer} \end{bmatrix} \times 3, \text{ Stride 2}$	$\left[\frac{F}{8}\right] \times \left[\frac{T}{8}\right] \times 256$	
Pooling	TSP	$2 \times [\frac{F}{8}] \times 256$	
Dense Dense	_ AM-Softmax	256 2793	

Tasks	Training	Evaluation	Metrics
Task 1 SV	CN Calab T	CN-Celeb.E	minDCF: 0.463, EER: 9.141%
Task 2 SR	CN-Celeb.T	SR.eval	mAP: 0.242

Baselines – Sunine for Juniors

ABOUT Sunine

• https://gitlab.com/csltstu/sunine

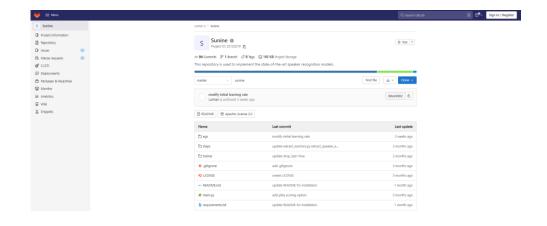
Sunine: THU-CSLT Speaker Recognition Toolkit

Sunine is an open-source speaker recognition toolkit based on PyTorch.

The goal is to create a user-friendly toolkit that can be used to easily develop state-of-the-art speaker recognition technologies.

Copyright: THU-CSLT (Tsinghua University, China) Apache License, Version 2.0 LICENSE

Authors : Lantian Li (lilt@cslt.org), Yang Zhang (zhangy20@mails.tsinghua.edu.cn) Co-author: Dong Wang (wangdong99@mails.tsinghua.edu.cn)



Prepared Baselines

- Data processing
 - > NULL
- Feature selection
 - Fbanks (80)
- Backbone
 - ➢ ResNet34SE
 - Attentive pooling
- Backend
 - Cosine similarity

Neural Backbone

I

Layer	Module	Output
Input Conv2D	$3 \times 3 \times 32$, Stride 1	$\begin{array}{c} F \times T \times 1 \\ F \times T \times 32 \end{array}$
ResNet Block-1	$\begin{bmatrix} 3 \times 3 \times 32 \\ 3 \times 3 \times 32 \\ \text{SE Layer} \end{bmatrix} \times 3, \text{ Stride 1}$	F×T×32
ResNet Block-2	$\begin{bmatrix} 3 \times 3 \times 64 \\ 3 \times 3 \times 64 \\ \text{SE Layer} \end{bmatrix} \times 4, \text{ Stride 2}$	$\left[\frac{F}{2}\right] \times \left[\frac{T}{2}\right] \times 64$
ResNet Block-3	$\begin{bmatrix} 3 \times 3 \times 128\\ 3 \times 3 \times 128\\ \text{SE Layer} \end{bmatrix} \times 6, \text{ Stride } 2$	$\left[\frac{F}{4}\right] \times \left[\frac{T}{4}\right] \times 128$
ResNet Block-4	$\begin{bmatrix} 3 \times 3 \times 256 \\ 3 \times 3 \times 256 \\ \text{SE Layer} \end{bmatrix} \times 3, \text{ Stride 2}$	$\left[\frac{F}{8}\right] \times \left[\frac{T}{8}\right] \times 256$
Pooling	ASP	$2 \times [\frac{F}{8}] \times 256$
Dense Dense	- AM-Softmax	256 2793

Tasks	Training	Evaluation	Metrics
Task 1 SV	CN Calab T	CN-Celeb.E	minDCF: 0.549, EER: 10.611%
Task 2 SR	CN-Celeb.T	SR.eval	mAP: 0.152

OUTLINE

Data, Tasks and Baselines

Technical Summary

D System Analysis

□ The Next CNSRC

Representative Techniques (16 Teams)

Components	Methods
Data processing	SpecAugment (Time/Frequency masking), Speed perturbation, Noise & Music & Reverberation & Babble augmentation, Short-clip concatenation/filtering
Feature selection	FBank, MFCC, PCEN, Energy, Spectrogram plus CMN, pre-trained WavLM as feature extractor
Neural backbone	ECAPA-TDNN variants (dynamic/multi-scale convolution, multi-scale attention, various ResBlocks), ResNet family (34/74/101/152/221/293) with SE, Split-attention, Gated attention RepVGG, Hybrid NN (CNN/TDNN/LSTM), Transformer
Pooling strategy	Multi-query Multi-head attention pooling, Global-local statistic pooling, SPoC pooling
Auxiliary design	Gradient reversal layer, Genre embedding, Mutual information, Data uncertainty learning
Loss function	Margin-based loss (AM, AAM, AdaFace) with Subcenter constraint, Inter-TopK penalty, Circle loss
Training strategy	Multi-stage training (e.g., Chunk size increasing, Large margin finetuning), LR schedulers (ReduceLROnPlateau/CyclicLR)
Backend scoring	Cosine (α QE), PLDA-(diag), Attention back-end + AS-Norm + QMF/music calibration
System fusion	Score-level average, Embedding-level ensemble

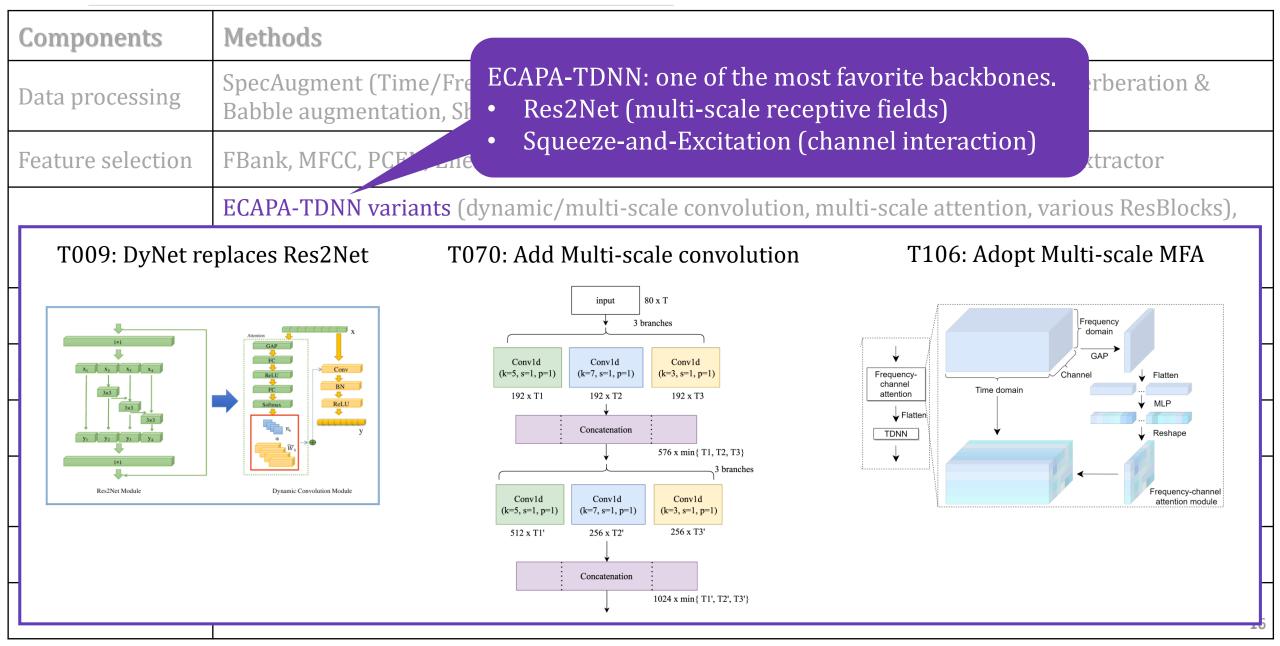
Technical **H**ighlights

Components	Methods
Data processing	SpecAugment (Time/Frequency masking), Speed perturbation, Noise & Music & Reverberation & Babble augmentation, Short-clip concatenation/filtering
Feature selection	FBank, MFCC, PCEN, Energy, Spectrogram plus CMN, pre-trained WavLM as feature extractor
Neural backbone	ECAPA-TDNN variants (dynamic/multi-scale convolution, multi-scale attention, various ResBlocks), ResNet family (34/74/101/152/221/293) with SE, Split-attention, Gated attention RepVGG, Hybrid NN (CNN/TDNN/LSTM), Transformer
Pooling strategy	Multi-query Multi-head attention pooling, Global-local statistic pooling, SPoC pooling
Auxiliary design	Gradient reversal layer, Genre embedding, Mutual information, Data uncertainty learning
Loss function	Margin-based loss (AM, AAM, AdaFace) with Subcenter constraint, Inter-TopK penalty, Circle loss
Training strategy	Multi-stage training (e.g., Chunk size increasing, Large margin finetuning), LR schedulers (ReduceLROnPlateau/CyclicLR)
Backend scoring	Cosine (αQE), PLDA-(diag), Attention back-end + AS-Norm + QMF/music calibration
System fusion	Score-level average, Embedding-level ensemble

Speed perturbation

Components	Methods				
Data processing	SpecAugment (Time/Frequency masking), Speed perturbation, Noise & Music & Reverberation & Babble augmentation, Short-clip concatenation/filtering				
Feature Results from T121					
be considered from a new speaker. nulti-sca			n Features	EER	MinDCF(0.01)
Neural k 21/293) T022, T082, T102, T106, T121 LSTM), T		~	MFCC-AM	9.930	0.5045
		2	Fbank-AM	10.18	0.4894 -
Pooling strategy	Multi-query Multi-head attention poolin	g, 3	Fbank-Sub-centers	10.54	0.4672
Auxiliary design	Gradient reversal layer, Genre embeddin	g, 4	Fbank(Speed Perturbation)-AM	8.696	0.4607
Loss function	Margin-based loss (AM, AAM, AdaFace)	5	Spectrogram-AM	10.90	0.4717
		_			coring with cosine distance.
Training strategy Multi-stage training (e.g., Chunk size increasing, Large margin finetuning), LR schedulers (ReduceLROnPlateau/CyclicLR)					
Backend scoring Cosine (α QE), PLDA-(diag), Attention back-end + AS-Norm + QMF/music calibration					
System fusion Score-level average, Embedding-level ensemble					

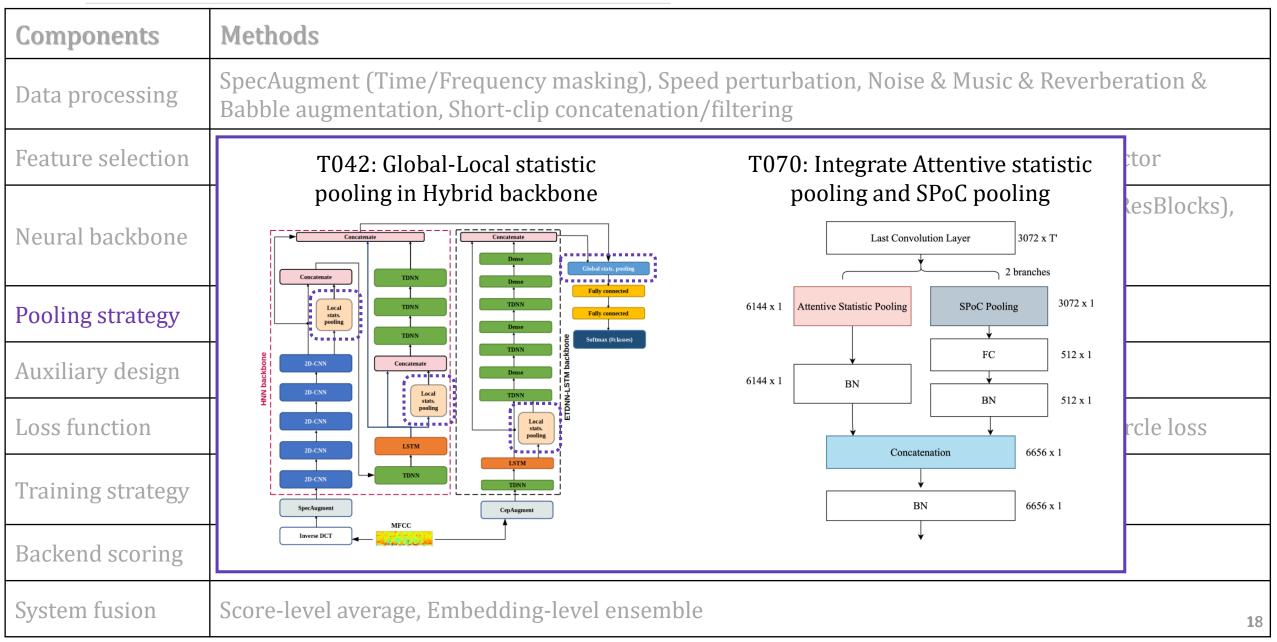
ECAPA-TDNN variants



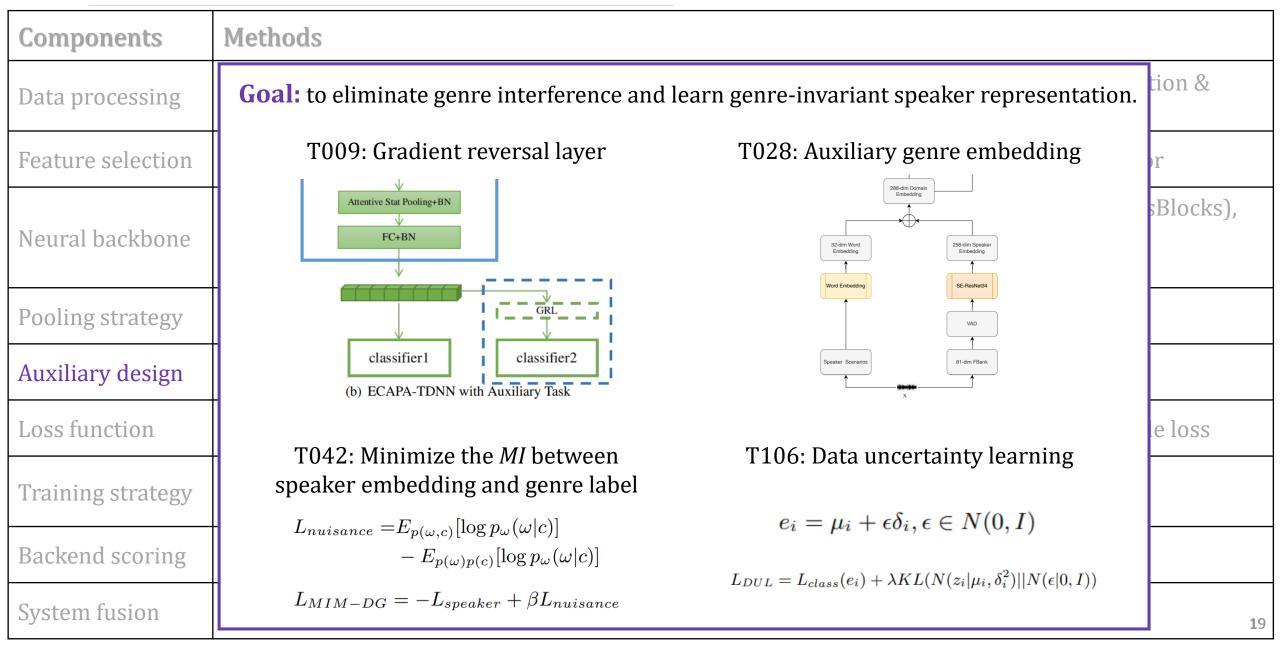
ResNet family

Components	Methods						
Data processing	SpecAugment (Time/Frequency masking), Speed perturbation, Noise & Music & Reverberation & Babble augmentation. Short-clip concatenation/filtering						
Feature selection	ResNet: one of the most favorite backbones. , pre-trained WavLM as feature extractor						
Neural backbone ECAPA- ResNet family (34/74/101/152/221/293) with SE, Split-attention, Gated attention							
TO22 5*System CN-Celeb.E eer minc ResNet34 7.8231 0.3755 Ecapa-tdnnL 8.8257 0.4086 ResNet74 7.7274 0.3785 RepVGG_A2 7.7387 0.3681	minDCF (0.01) EER $(\%)$ minDCF (0.01) EER $(\%)$ 0.3958 7.981 0.3707 6.590 0.3386 5.762 0.3270 5.553 0.3361 6.279	T053: Split-attention block	T106: Gated F-C attention module $F \times T \times C$ GAP C a a b g g g f f f f f g f f f f f f f f				

Pooling strategy



Auxiliary design



Loss function

Components	Methods					
Data processing	Subcenter: to alleviate the effect of noisy and low-quality samples					
Feature selection	T022/T102/T106/T121 $\cos(\theta_{i,j}) = \max_{1 \le k \le K} (\ \boldsymbol{z}_i\ \cdot \ \boldsymbol{W}_{j,k}\)$					
Neural backbone	Inter-TopK or AdaFace: to choose sample / margin based on data quality.T022/T102: Inter-TopK penaltyT106: AdaFace-Softmax					
Pooling strategy Auxiliary design	$\phi(\theta_j) = \begin{cases} \cos(\theta_j + m), & j \in \underset{1 \le n \le N}{\operatorname{arg} \operatorname{top} K(\cos(\theta_j))} \\ \cos(\theta_j). & Others \end{cases} \qquad f(\theta_{i,j}, m)_{\operatorname{AdaFace}} = \begin{cases} s \cos(\theta_{i,j} + g_{\operatorname{angle}}) - g_{\operatorname{add}} & j = y_i \\ s \cos(\theta_{i,j}) & j \ne y_i \end{cases}$					
Loss function	Margin-based loss (AM, AAM, AdaFace) with Subcenter constraint, Inter-TopK penalty, Circle loss					
Training strategy	Multi-stage training (e.g., Chunk size increasing, Large margin finetuning), LR schedulers (ReduceLROnPlateau/CyclicLR)					
Backend scoring	Cosine (α QE), PLDA-(diag), Attention back-end + AS-Norm + QMF/music calibration					
System fusion	Score-level average, Embedding-level ensemble					

Backend scoring

Components	Methods						
Data processing	αQE and attention back-end: to leverage multiple enrollment utterances.						
Feature selection	T057: αQE (alpha query expansion) toT106: self-attention to learn the intra-enrollment aggregation at test timerelationship of enrollments						
Neural backbone	Ablation Study on ResNet34(Fbank) System EER(%) MinDCF	Sub-Systems	CN-Celeb.E(TTA) EER(%) minDCF				
	ResNet34(Fbank) 9.94 0.5261	Speaker-ViT S1: Speaker-ViT + back-end ResNet-Att	9.012 7.282 7.502	0.4318 0.4240 0.4234			
Pooling strategy	$+\alpha QE = 8.80 = 0.4323 \\ ++AS-Norm = 8.31 = 0.4041$	S2: ResNet-Att + back-end CNN-ECAPA-TDNN S3: CNN-ECAPA-TDNN + back-end	7.302 7.187 8.037 6.928	0.4234 0.4039 0.4137 0.4048			
Auxiliary design	QMF: quality-aware calibration based	S3: CNN-ECAPA-TDNN + back-end MFA-ECAPA S4: MFA-ECAPA + back-end CNN-Speaker-ViT	8.237 6.860 7.851	0.4048 0.4162 0.3974 0.3957			
Loss function	on quality metric function T053: QMF of duration	S5: CNN-Speaker-ViT + back-end	6.888	0.3832			
Training strategy	$\hat{S} = S + C \cdot f(d_t) \qquad f(d_t) = \frac{1}{d_t}$						
Backend scoring	Cosine (αQE), PLDA-(diag), Attention back-en	d + AS-Norm + QMF/music ca	libratio	n			
System fusion	Score-level average, Embedding-level ensemb	le			21		

OUTLINE

Data, Tasks and Baselines

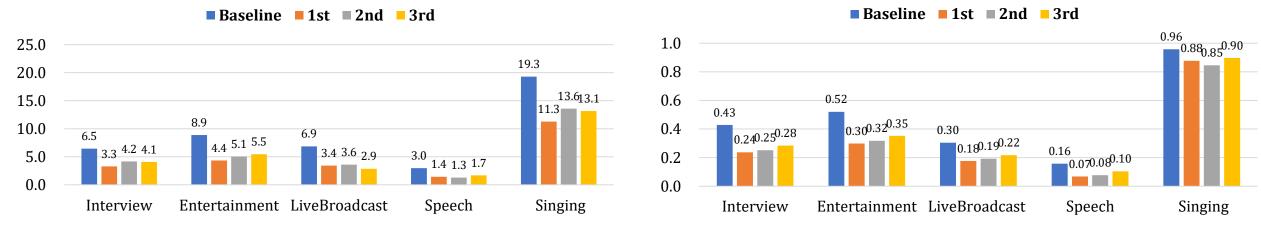
D Technical Summary

D System Analysis

□ The Next CNSRC

Multi-genre analysis

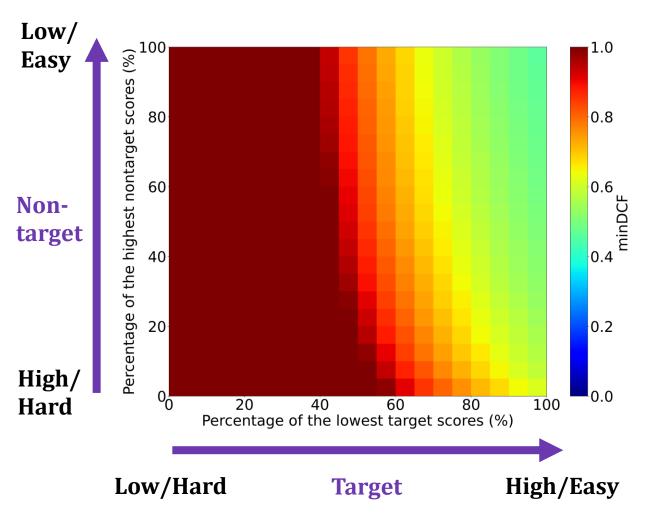
- Select 5 genres which have the most number of test trials.
- Make comparison amongst Baseline and Top-3 systems.



EER (%)

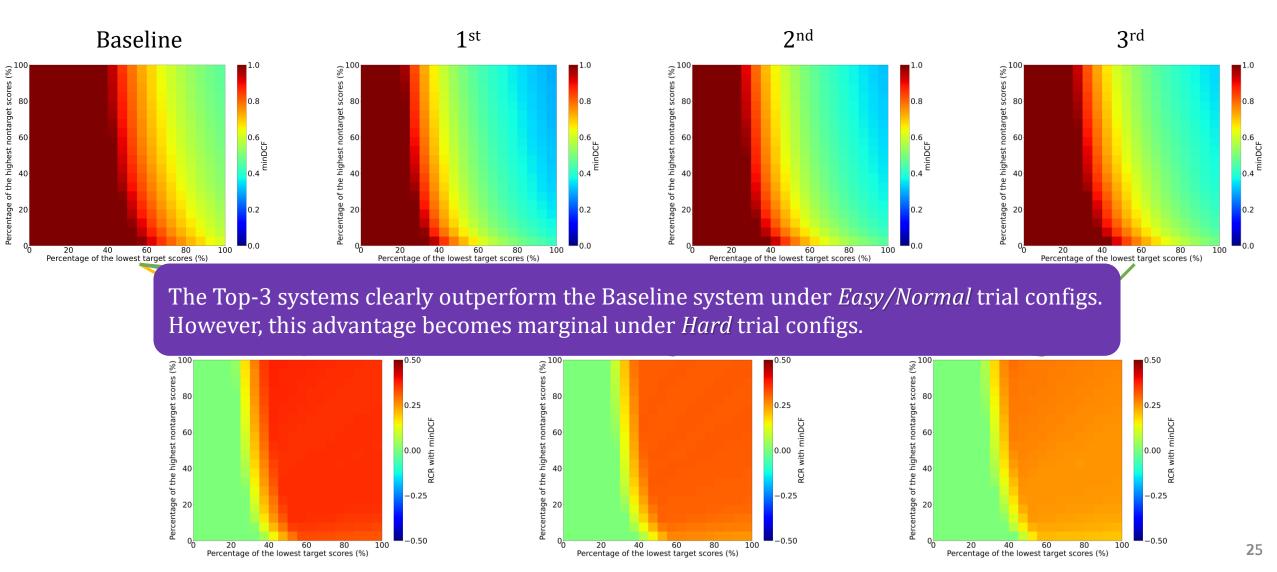
- Different genres present obviously different performance.
- Under different genres, the Top-3 systems show different advantage.

More fine-grained comparison with minDCF (0.01) via *C-P map*

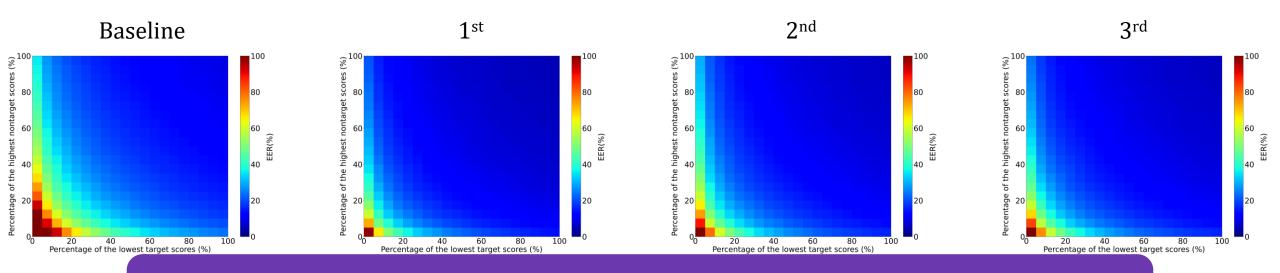


- Each point is a subset of the full trials, defined as a trial config.
- x-axis: scores of Target trials are *increased* from left to right. [from hard to easy]
- **y-axis**: scores of **Non-target** trials are *decreased* from bottom to up. [from hard to easy]
- The **color** in the map represents the metric values corresponding to each trial config.

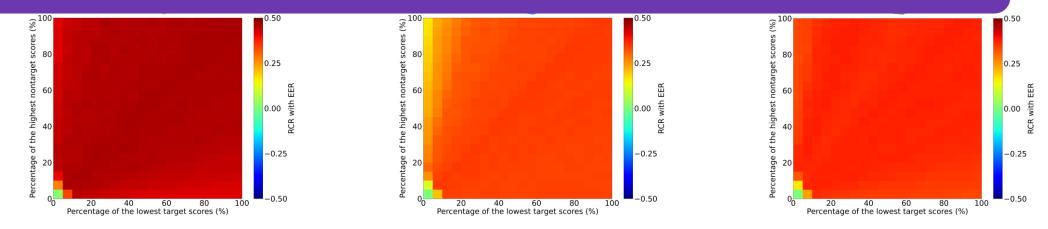
More fine-grained comparison with minDCF (0.01) via *C-P map*



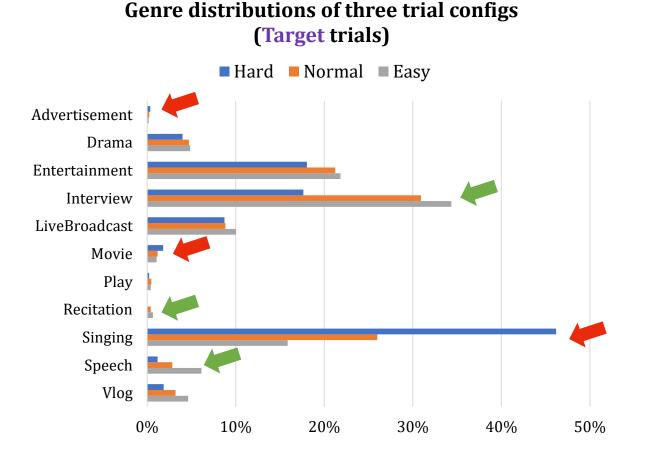
■ More fine-grained comparison with EER (%) via *C-P map*

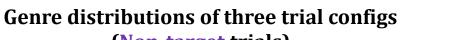


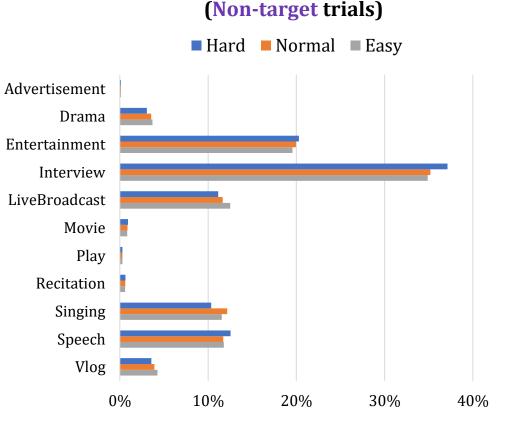
The Top-3 systems outperform the Baseline system under a majority of trial configs. The large proportion of high-performance area reveals that there are larger amount of *Easy* trials.



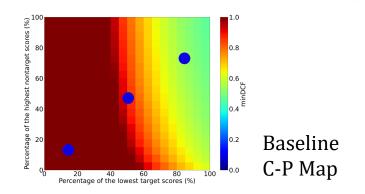
- Genre distributions of Easy/Normal/Hard trial configs.
 - The genre distribution of target trials plays a key role.
 - Different genres show different levels of difficulty.





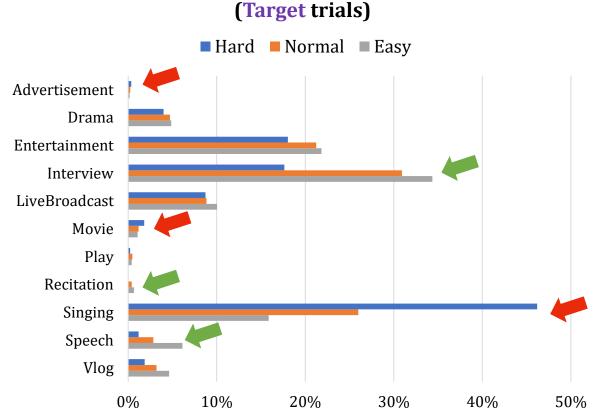


Odyssey-CNSRC 2022 Workshop

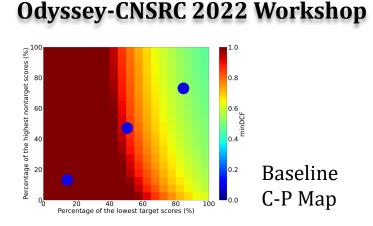


50% 27

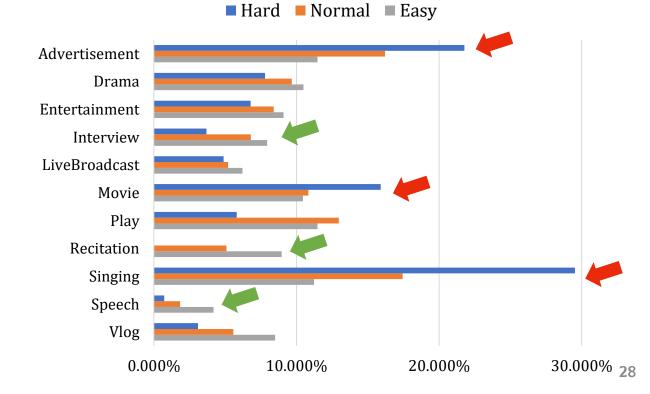
- Genre distributions of Easy/Normal/Hard trial configs.
 - The genre distribution of target trials plays a key role.
 - Different genres show different levels of difficulty.



Genre distributions of three trial configs (Target trials)



Genre distributions of three trial configs (Target trials) with Normalization

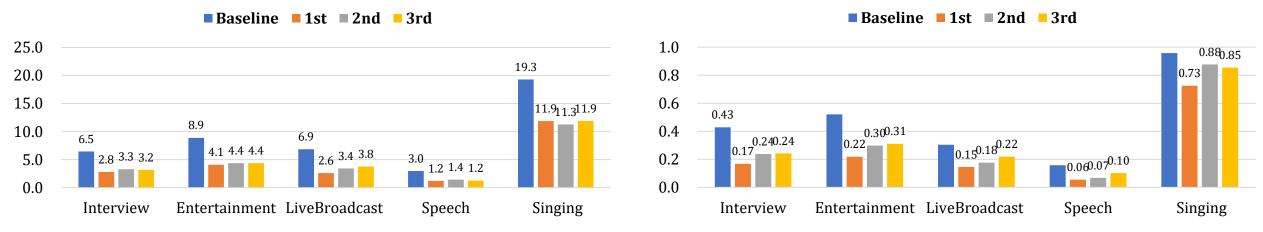


minDCF (0.01)

Task 1 SV: <u>Open</u> Track

Multi-genre analysis

- Select 5 genres which have the most number of test trials.
- Make comparison amongst Baseline and Top-3 systems.

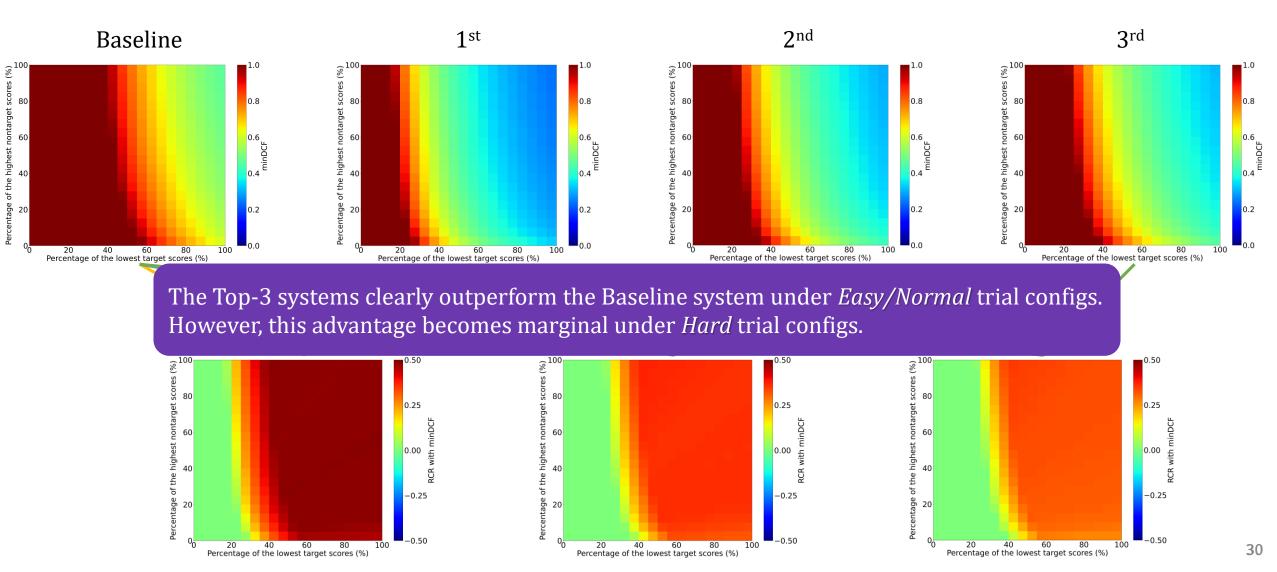


EER (%)

- Different genres present obviously different performance.
- Under different genres, the Top-3 systems show different advantage.

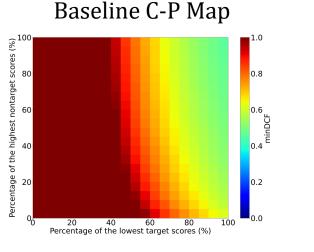
Task 1 SV: <u>Open</u> Track

More fine-grained comparison with minDCF (0.01) via *C-P map*



Task 1 SV: Fixed Track vs. Open Track

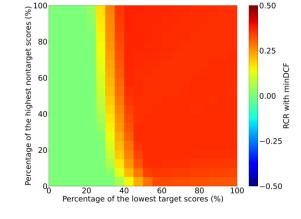
□ Fixed/Open Comparison with minDCF (0.01) via *delta C-P map*

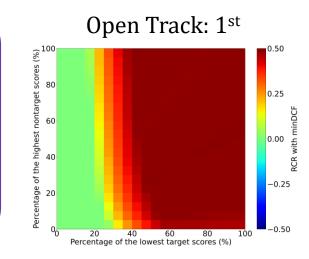


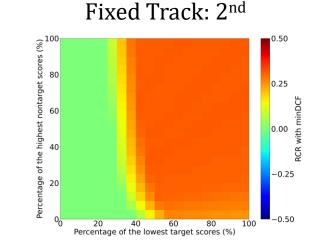
Systems in the Open track is superior to systems in Fixed track.

The more data, the better performance, especially on *Easy/Normal trial configs*.

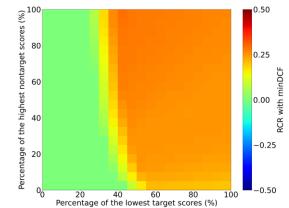
Fixed Track: 1st

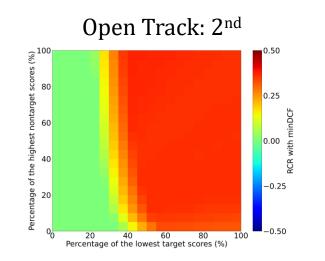




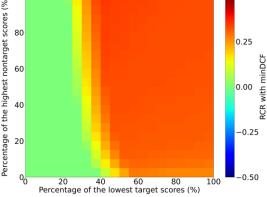


Fixed Track: 3rd





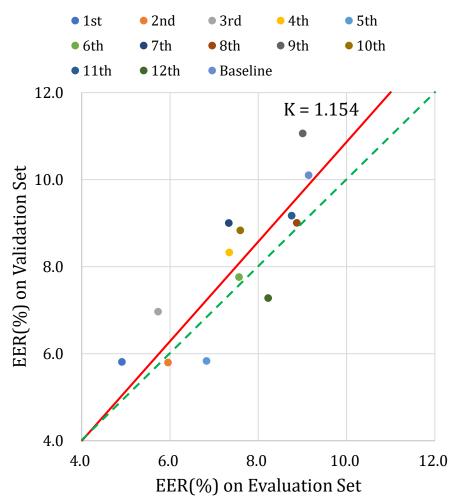
Open Track: 3rd



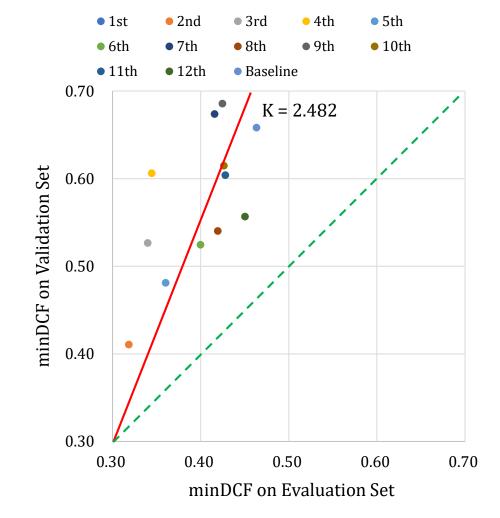
Task 1 SV: Evaluation vs. Validation

Visible vs. **B**lind **I**nnovativeness vs. **P**racticability

Task 1 SV: Fixed Track (EER%)



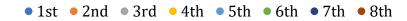
Task 1 SV: Fixed Track (minDCF)

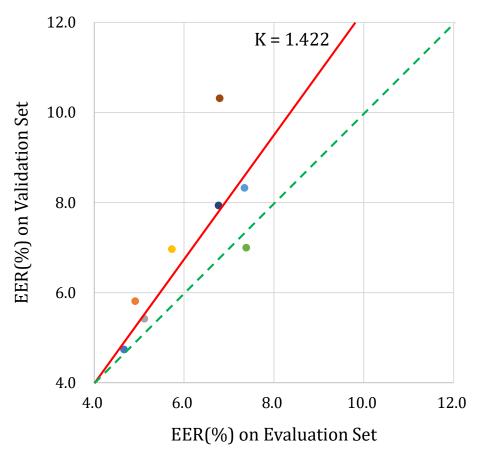


Task 1 SV: Evaluation vs. Validation

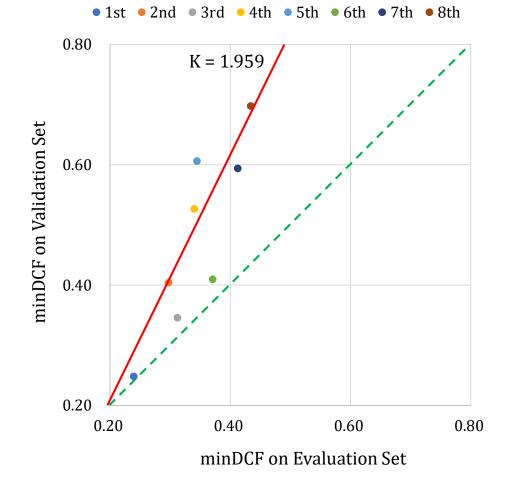
Visible vs. **B**lind **I**nnovativeness vs. **P**racticability

Task 1 SV: Open Track (EER%)





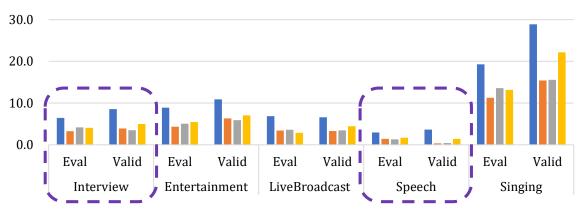
Task 1 SV: Open Track (minDCF)



Task 1 SV: Evaluation vs. Validation

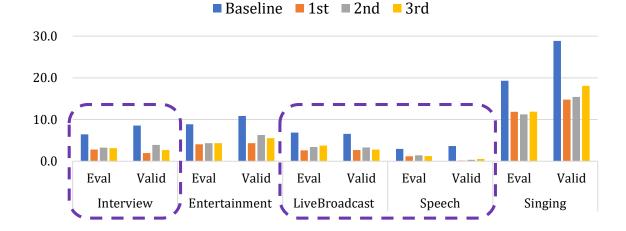
Evaluation vs. Validation on Different Genres

Task 1 SV: Fixed Track (EER%)

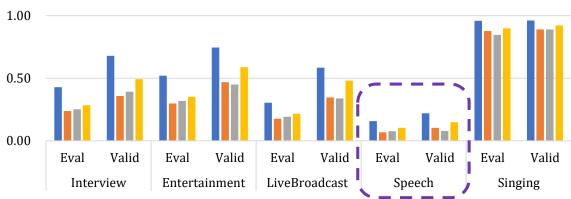


■Baseline ■1st ■2nd ■3rd

Task 1 SV: Open Track (EER%)



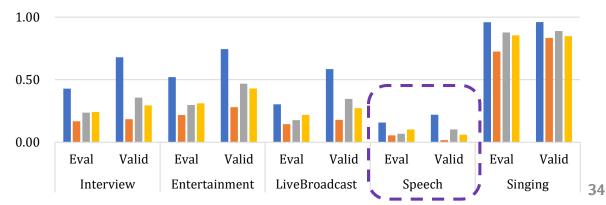
Task 1 SV: Fixed Track (minDCF)



■ Baseline ■ 1st ■ 2nd ■ 3rd

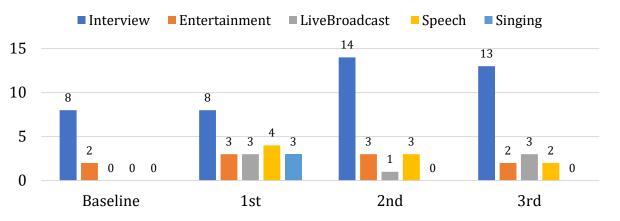
Task 1 SV: Open Track (minDCF)

■Baseline ■1st ■2nd ■3rd



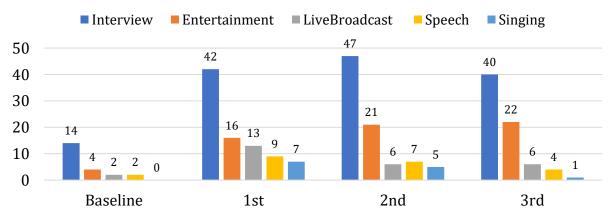
Task 2 <u>SR</u>: Open Track

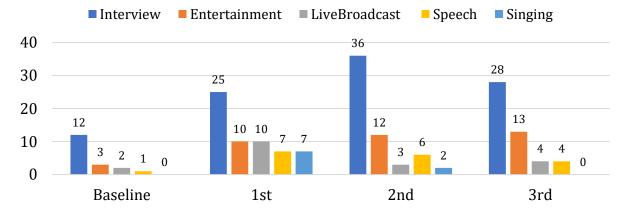
System comparison



Top-1 retrieval counts

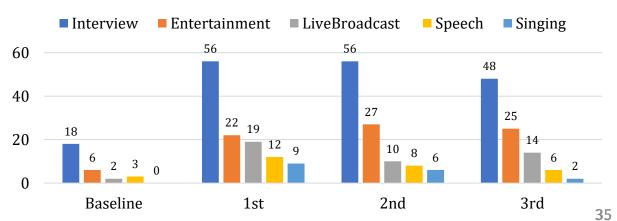
Top-5 retrieval counts





Top-3 retrieval counts

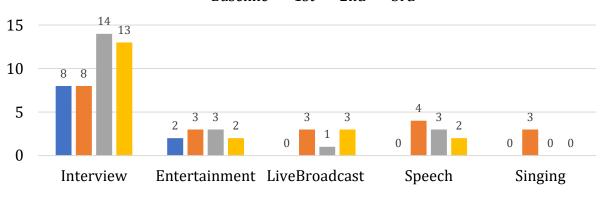
Top-10 retrieval counts



Task 2 <u>SR</u>: Open Track

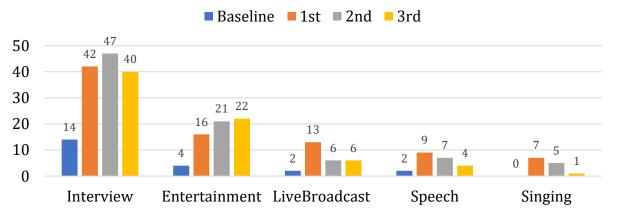
Genre comparison

Top-1 retrieval counts

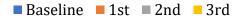


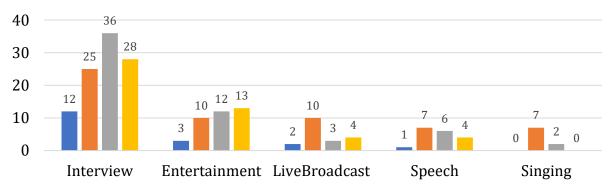
■Baseline ■1st ■2nd ■3rd

Top-5 retrieval counts

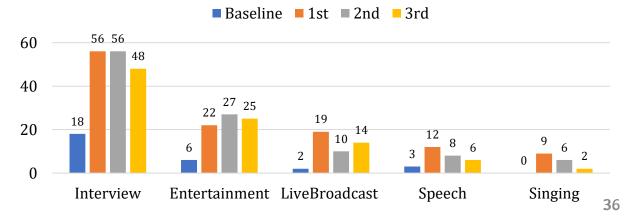


Top-3 retrieval counts





Top-10 retrieval counts



OUTLINE

Data, Tasks and Baselines

D Technical Summary

D System Analysis

The Next CNSRC

The Next CNSRC

Evaluation Protocol

- Advocate and standardize the '**Pre-Evaluation + Post-Validation**' mode
- 🗖 SV Task
 - Employ more convincing and all-round evaluation measurement (e.g., C-P map).
 - Design various types of trials (e.g., easy/normal/hard trials) to evaluate system.
- 🗖 SR Task
 - Consider the computation complexity (e.g., time and memory)
- New Tasks
 - For multi-speaker genres, such as interview or entertainment, to design a speaker localization and recognition task.

CNSRC 2022

CN-Celeb Speaker Recognition Challenge 2022

Many Thanks !

http://cnceleb.org/workshop

Odyssey-CNSRC 2022 Workshop 27 June 2022, Beijing, China

